跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/05 06:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃上溢
研究生(外文):Huang, Shang-Yi
論文名稱:結合電流操控技術及電極電場交互效應的人工電子耳語音訊號處理策略聲學模型
論文名稱(外文):Acoustic models for Cochlear Implants Signal Processing Strategies Incorporating Current Steering Scheme and Analysis of Electrical Field Interaction between Cochlear Implant Electrodes
指導教授:蔡德明蔡德明引用關係
指導教授(外文):Choi, T. M. Charles
學位類別:碩士
校院名稱:國立交通大學
系所名稱:生醫工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:英文
論文頁數:61
中文關鍵詞:植入式人工電子耳虛擬通道電場交互作用刺激策略電流操控技術聽力測驗
外文關鍵詞:cochlear implantvocoder; current steering(virtual channel)electrical field interactionstimulating strategyhearing test
相關次數:
  • 被引用被引用:0
  • 點閱點閱:155
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
植入式人工電子耳可以提供給嚴重的聽障患者一個重新再察覺到聽覺的機會。然而在傳統的語音處理策略下的聽覺品質往往受限於有限個數的電極。對人工電子耳配戴者而言,電極間的電場交互作用會造成原本的語音訊號失真。
在實作聲學模型或語音編碼器裡,兩種刺激策略(FAME和DRNL)結合電流操控技術後會提供比原來策略更高的頻譜解析度。為了在聲學模型或語音編碼器上模擬電極間的電場交互作用,利用修正過後的SPREAD模型結合常見的策略反映出在人工電子耳電極間的電場交互效應。
實驗一的結果顯示兩種策略結合電流操控技術後在正常聽力測驗會較好的成果。在實驗二的結果顯示刺激策略加上SPREAD 模型後會減少在正常聽力受測和人工配電者的臨床資料的差距。

Cochlear implants can provide an opportunity for severe to profound hearing impaired patients to perceive hearing sensation again. However, the hearing resolutions of traditional speech processing strategies are constrained by the limited number of electrodes. For cochlear implant users, the electrical field interaction between the electrodes would distort speeches.
In acoustic model or vocoder implementations, two stimulating strategies (FAME and DRNL), incorporating current steering schemes to provide a higher frequency spectrum resolution than the two original strategies, are studied. To simulate the electrical field interaction in the acoustic model or vocoder, the revised SPREAD model combined with common strategies is introduced to reflect the electric field interaction between cochlear implant electrodes.
Result of the first experiment shows that the two strategies with current steering scheme performed better in hearing tests. Result of the second experiment shows that the stimulating strategies with SPREAD model would reduce the gap between the results from normal hearing test subjects and those from cochlear implant users.

摘要 I
Abstract II
Acknowledgement IV
Content V
List of Figures VII
List of Tables IX
Chap.1 Introduction 1
1.1 Background Information 1
1.2 Literature Review 2
1.3 Problem Statement 5
1.4 Research Objective 6
1.5 Thesis Overview 7
Chap.2 Background Research 8
2.1 Speech Processing Strategies for Cochlear Implants 9
2.2 Current Steering Scheme Applied in Cochlear Implant 15
2.3 Hybrid Strategy and Psychoacoustic Model 16
2.4 Electrical Field Interaction between Channel and Channel 19
2.5 Purpose of Research 21
Chap.3 Methods 23
3.1 FAME Combined with Current Steering Scheme 23
3.2 DRNL Combined with Current Steering Scheme 26
3.3 Construct SPREAD Matrix by Activation Function Profile 30
3.4 Test Material 33
3.5 Normal Hearing Experiments Design 35
Chap.4 Results 39
4.1 Performance Comparison with different strategies 39
4.2 Analysis of the strategies with current steering or not 41
4.3 Comparison of vocoder, SPREAD model, and CI data 46
4.4 Analysis of the SPREAD model 50
Chap.5 Conclusions 54
5.1 Conclusions 54
5.2 Future work 55
Reference 58
Appendix A 61

[1] P. C. Loizou, “Introduction cochlear implant,” IEEE Engineering in Medical and Biology magazine, vol. 18, pp. 32-42, 1999.
[2] D. Eddington, “Speech discrimination in deaf subjects with cochlear implants,” Journal of the Acoustical Society of America, vol. 68, no. 3, pp. 885-891, 1980.
[3] W.F. House. Cochlear implants. Annals of Otology, Rhinology and Laryngology 85, 1976.
[4] Homer Dudley. Signal Transmission. US Patent No.2151019, May 21, 1939.
[5] P. C. Loizou, “Speech processing in vocoder-centric cochlear implants,” Adv Otorhinolaryngol. Basel, Karger, vol. 64, pp. 109–143, 2006.
[6] Advanced Bionics Corporation, Increasing spectral channels through current steering in HiResolution bionics ear users, 2005.
[7] F. Spelman, “The past, present, and future of cochlear prostheses,” IEEE Engineering in Medicine and Biology magazine, vol. 18, no. 3, pp. 27-33, 1999.
[8] P. C. Loizou, “Mimicking the human ear,” IEEE Signal Processing Magazine, vol. 15, no. 5, pp. 101-130, 1998.
[9] Lane Cove, ACE and CIS DSP Strategies, Software Requirement specification, N95287F Issue1,2002.
[10] K.Nie, G. Stickney, and F. G. Zeng, “Encoding frequency modulation to improve cochlear implant performance in noise,” IEEE Transactions on Biomedical Engineering, vol. 52, no. 1, pp. 64-73, 2005.
[11] C. S. Throckmorton, M. Selin Kucukoglu, J. J. Remus et al., “Acoustic model investigation of a multiple carrier frequency algorithm for encoding fine frequency structure: Implications for cochlear implants,” Hearing research, vol. 218, no. 1, pp. 30-42, 2006.
[12] J. S. Stohl, “Investigating the perceptual effects of multi-rate stimulation in cochlear implants and the development of a tuned multi-rate sound processing strategy,” PHD thesis, Duke University, 2009.
[13] F. Chen and Y.T. Zhang, “A novel temporal fine structure-based speech synthesis model for cochlear implant,” Signal Processing, vol.88, pp.2693-2699, 2008.
[14] R. Meddis, L. P. O’Mard, and E. A. Lopez-Poveda, “A human nonlinear cochlear filterbank,” The Journal of the Acoustical Society of America, vol. 110, pp. 3107-3118, 2001.
[15] S. D. Holmes, C. J. Sumner, L. P. O'Mard, and R. Meddis, “The temporal representation of speech in a nonlinear model of the guinea pig cochlea,” The Journal of the Acoustical Society of America, vol. 116, pp. 3534-3545, 2004.
[16] O. Poroy and P. C. Loizou, "Pitch perception using virtual channels." ,In Conference on Implantable Auditory Prostheses, Asilomar, Monterey, CA, 2001.
[17] M. VONDR□ŠEK, T. TICHÝ, and P. SOVKA, “Virtual channels in Nucleus□ 24 Implant, [Invited unpublished lecture.],” Cochlear Mechele, 2006.
[18] Advanced Bionics Corporation, Increasing spectral channels through current steering in HiResolution bionics ear users, 2005.
[19] B. WILSON, M. ZERBI, and D. LAWSON, “Identification of virtual channel conditions on the basis of pitch,“ Third Quarterly Progress Report, NIH project NOI-DC-2-2401.
[20] C.T.M Choi and C. H. Hsu, “Modeling virtual channel based on various electrode shape configuration,” Prop of the 6thAsia Pacific Symposium on Cochlear Implant and Related Sciences, Sydney, 2007.
[21] C.T. M. Choi and C. H. Hsu, “Conditions for generating virtual channels for cochlear prosthesis systems,” Annals of Biomedical Engineering, vol. 37, no. 3, pp. 614-624, 2009.
[22] E. Zwicker and H. Fastl, Psychoacoustics: Facts and Models, Springer, Berlin, Germany, 1990.
[23] R. P. Hellman, “Asymmetry of masking between noise and tone,” Attention, Perception, and Psychophysics, vol. 11, pp. 241-246, 1972.
[24] E. Zwicker, and U. T. Zwicker, “Audio Engineering and Psychoacoustics: Matching Signals to the Final Receiver,” Readings in multimedia computing and networking, pp. 115-126, 2002.
[25] B. Scharf, “Critical bands,” Foundations of modern auditory theory, vol. 1, pp. 157-202, 1970.
[26] T.Strydom and J.J. Hanekom, “An analysis of the effects of electrical field interaction with an acoustic model of cochlear implants,” The Journal of the Acoustical Society of America, vol.129, pp.2213–2226, 2011.
[27] T. Strydom, “Acoustic models of cochlear implants,” PhD thesis, University of Pretoria, 2010.
[28] Z. M. Smith, B. Delgutte, and A. J. Oxenham, “Chimaeric sounds reveal dichotomies in auditory perception,” Nature, vol. 416, no. 6876, pp. 87-90, 2002.
[29] F. G. Zeng, “Trends in cochlear implants,” Trends in Amplification, vol. 8, no. 1, pp. 1-34, 2004.
[30] M. Slaney, “An efficient implementation of the Patterson-Holdsworth auditory filter bank,” Apple Computer, Perception Group, Tech. Rep, 1993.
[31] S. D. Holmes, C. J. Sumner, L. P. O'Mard et al., “The temporal representation of speech in a nonlinear model of the guinea pig cochlea,” The Journal of the Acoustical Society of America, vol. 116, pp. 3534, 2004.
[32] C. J. Sumner, E. A. Lopez-Poveda, L. P. O'Mard et al., “Adaptation in a revised inner-hair cell model,” The Journal of the Acoustical Society of America, vol. 113, pp. 893-901, 2003.
[33] 蔡志浩、陳小娟, "噪音背景辨識語音測驗編製研究," 特殊教育研究學刊, pp.121-140, 2002.
[34] 翁嘉慧, “ACE與CIS人工耳蝸言語處理策略在本國言語及聲調聽辨表現之比較,” 碩士論文, 國立高雄師範大學, 2008.
[35] 劉淑惠, “虛擬頻道技術之臨床運用對人工耳蝸兒童語詞聽辨之影響,” 碩士論文, 國立高雄師範大學, 2009.
[36] Y.S.Wang, “Implementation and testing of novel current steering strategy for cochlear implant systems,” Master thesis, NCTU, 2010.
[37] C. G. Wei, K. Cao, and F. G. Zeng, “Mandarin tone recognition in cochlear implant subjects,” Hearing research, vol. 197, no. 1, pp. 87-95, 2004.
[38] B. WILSON, M. ZERBI, and D. LAWSON, “Identification of virtual channel conditions on the basis of pitch,” Third Quarterly Progress Report, NIH project NOI-DC-2-2401.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top