|
1. Conibeer, G., Third-generation photovoltaics. Materials Today, 2007. 10(11): p. 42-50. 2. Lu, W., et al., Preparation of silver island films with tunable surface plasmon resonance. 2012: p. 856426-856426. 3. Crabtree, G.W. and N.S. Lewis, Solar energy conversion. Physics Today, 2007. 60(3): p. 37-42. 4. Shockley, W. and H.J. Queisser, Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. Journal of Applied Physics, 1961. 32(3): p. 510-519. 5. Zhou, Y.F., M. Eck, and M. Kruger, Bulk-heterojunction hybrid solar cells based on colloidal nanocrystals and conjugated polymers. Energy &; Environmental Science, 2010. 3(12): p. 1851-1864. 6. Bredds, J.L. and J.R. Durrant, Organic Photovoltaics. Accounts of Chemical Research, 2009. 42(11): p. 1689-1690. 7. Eliseeva, S.V. and J.-C.G. Bunzli, Rare earths: jewels for functional materials of the future. New Journal of Chemistry, 2011. 35(6): p. 1165-1176. 8. Lewis, N.S., Toward cost-effective solar energy use. Science, 2007. 315(5813): p. 798-801. 9. Kirchartz, T., K. Taretto, and U. Rau, Efficiency Limits of Organic Bulk Heterojunction Solar Cells. The Journal of Physical Chemistry C, 2009. 113(41): p. 17958-17966. 10. Benanti, T.L. and D. Venkataraman, Organic solar cells: An overview focusing on active layer morphology. Photosynthesis Research, 2006. 87(1): p. 73-81. 11. Malinauskas, A., Chemical deposition of conducting polymers. Polymer, 2001. 42(9): p. 3957-3972. 12. Li, G., R. Zhu, and Y. Yang, Polymer solar cells. Nat Photon, 2012. 6(3): p. 153-161. 13. Peumans, P., A. Yakimov, and S.R. Forrest, Small molecular weight organic thin-film photodetectors and solar cells. Journal of Applied Physics, 2003. 93(7): p. 3693-3723. 14. Catchpole, K.R., S. Pillai, and K.L. Lin. Novel applications for surface plasmons in photovoltaics. in Photovoltaic Energy Conversion, 2003. Proceedings of 3rd World Conference on. 2003. 15. Bittner, E.R., J.G.S. Ramon, and S. Karabunarliev, Exciton dissociation dynamics in model donor-acceptor polymer heterojunctions. I. Energetics and spectra. The Journal of Chemical Physics, 2005. 122(21): p. 214719-9. 16. Thompson, B.C. and J.M.J. Fr□chet, Polymer–Fullerene Composite Solar Cells. Angewandte Chemie International Edition, 2008. 47(1): p. 58-77. 17. Cheng, Y.-J., S.-H. Yang, and C.-S. Hsu, Synthesis of Conjugated Polymers for Organic Solar Cell Applications. Chemical Reviews, 2009. 109(11): p. 5868-5923. 18. Feron, K., et al., Organic Solar Cells: Understanding the Role of F246;rster Resonance Energy Transfer. International Journal of Molecular Sciences, 2012. 13(12): p. 17019-17047. 19. Guo, J., et al., Charge Generation and Recombination Dynamics in Poly(3-hexylthiophene)/Fullerene Blend Films with Different Regioregularities and Morphologies. Journal of the American Chemical Society, 2010. 132(17): p. 6154-6164. 20. Huijser, A., et al., An experimental study on the molecular organization and exciton diffusion in a bilayer of a porphyrin and poly(3-hexylthiophene). Journal of Applied Physics, 2008. 104(3): p. 034505-10. 21. Benson-Smith, J.J., et al., Formation of a Ground-State Charge-Transfer Complex in Polyfluorene//[6,6]-Phenyl-C61 Butyric Acid Methyl Ester (PCBM) Blend Films and Its Role in the Function of Polymer/PCBM Solar Cells. Advanced Functional Materials, 2007. 17(3): p. 451-457. 22. NOLASCO, J.C., et al., ELECTRICAL PROPERTIES OF P3HT (POLY [3-HEXYLTHIOPHENE])/n-TYPE CRYSTALLINE SILICON (n-c-Si) SOLAR CELLS. International Journal of High Speed Electronics and Systems, 2011. 20(04): p. 749-773. 23. Walter, M.G., A.B. Rudine, and C.C. Wamser, Porphyrins and phthalocyanines in solar photovoltaic cells. Journal of Porphyrins and Phthalocyanines, 2010. 14(09): p. 759-792. 24. Waldauf, C., et al., Physics of organic bulk heterojunction devices for photovoltaic applications. Journal of Applied Physics, 2006. 99(10): p. 104503-6. 25. Liao, K.-S., et al., Designs and Architectures for the Next Generation of Organic Solar Cells. Energies, 2010. 3(6): p. 1212-1250. 26. Mandoc, M.M., et al., Origin of the Reduced Fill Factor and Photocurrent in MDMO-PPV:PCNEPV All-Polymer Solar Cells. Advanced Functional Materials, 2007. 17(13): p. 2167-2173. 27. Moliton, A. and J.-M. Nunzi, How to model the behaviour of organic photovoltaic cells. Polymer International, 2006. 55(6): p. 583-600. 28. Jo, J., et al., Three-Dimensional Bulk Heterojunction Morphology for Achieving High Internal Quantum Efficiency in Polymer Solar Cells. Advanced Functional Materials, 2009. 19(15): p. 2398-2406. 29. Rostalski, J. and D. Meissner, Monochromatic versus solar efficiencies of organic solar cells. Solar Energy Materials and Solar Cells, 2000. 61(1): p. 87-95. 30. Rohde, R.A. Solar spectrum. 9 October 2008; Available from: http://www.globalwarmingart.com/wiki/File:Solar_Spectrum_png. 31. Bainbridge, W.S., Nanotechnology: Societal Implications—Individual Perspectives. 32. Patra, C.R., et al., Application of Gold Nanoparticles for Targeted Therapy in Cancer. Journal of Biomedical Nanotechnology, 2008. 4(2): p. 99-132. 33. Haes, A.J., et al., Using solution-phase nanoparticles, surface-confined nanoparticle arrays and single nanoparticles as biological sensing platforms. J Fluoresc, 2004. 14(4): p. 355-67. 34. Wang, L., et al., Sensing Arrays Constructed from Nanoparticle Thin Films and Interdigitated Microelectrodes. Sensors, 2006. 6(6): p. 667-679. 35. Spinelli, P. and A. Polman, Prospects of near-field plasmonic absorption enhancement in semiconductor materials using embedded Ag nanoparticles. Opt. Express, 2012. 20(S5): p. A641-A654. 36. Kasture, S., et al., Near dispersion-less surface plasmon polariton resonances at a metal-dielectric interface with patterned dielectric on top. Applied Physics Letters, 2012. 101(9): p. 091602-091602-4. 37. Homola, J., Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species. Chemical Reviews, 2008. 108(2): p. 462-493. 38. Barnes, W.L., A. Dereux, and T.W. Ebbesen, Surface plasmon subwavelength optics. Nature, 2003. 424(6950): p. 824-830. 39. Spatially resolved quantum plasmon modes in metallic nano-films from first-principles. Physical Review B, 2012. 86(24). 40. Kelly, K.L., et al., The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. The Journal of Physical Chemistry B, 2002. 107(3): p. 668-677. 41. Lal, S., S. Link, and N.J. Halas, Nano-optics from sensing to waveguiding. Nat Photon, 2007. 1(11): p. 641-648. 42. Hao, E. and G.C. Schatz, Electromagnetic fields around silver nanoparticles and dimers. The Journal of Chemical Physics, 2004. 120(1): p. 357-366. 43. Catchpole, K.R. and A. Polman, Plasmonic solar cells. Opt. Express, 2008. 16(26): p. 21793-21800. 44. Catchpole, K.R. and A. Polman, Design principles for particle plasmon enhanced solar cells. Applied Physics Letters, 2008. 93(19): p. 191113-3. 45. Sundararajan, S.P., et al., Nanoparticle-Induced Enhancement and Suppression of Photocurrent in a Silicon Photodiode. Nano Letters, 2008. 8(2): p. 624-630. 46. Mertens, H., et al., Infrared surface plasmons in two-dimensional silver nanoparticle arrays in silicon. Applied Physics Letters, 2004. 85(8): p. 1317-1319. 47. Mody, V.V., et al., Introduction to metallic nanoparticles. J Pharm Bioallied Sci, 2010. 2(4): p. 282-9. 48. Dissanayake, D.M.N.M., B. Roberts, and P.C. Ku, Plasmonic backscattering enhanced inverted photovoltaics. Applied Physics Letters, 2011. 99(11): p. 113306-3. 49. Yang, J., et al., Plasmonic Polymer Tandem Solar Cell. ACS Nano, 2011. 5(8): p. 6210-6217. 50. Chen, L.-M., et al., Interface investigation and engineering - achieving high performance polymer photovoltaic devices. Journal of Materials Chemistry, 2010. 20(13): p. 2575-2598. 51. Yenjai, S., et al., Selective cleavage of pepsin by molybdenum metallopeptidase. Biochemical and Biophysical Research Communications, 2012. 419(1): p. 126-129. 52. Nardes, A.M., et al., Conductivity, work function, and environmental stability of PEDOT:PSS thin films treated with sorbitol. Organic Electronics, 2008. 9(5): p. 727-734. 53. Hung, L.S. and C.H. Chen, Recent progress of molecular organic electroluminescent materials and devices. Materials Science and Engineering: R: Reports, 2002. 39(5): p. 143-222. 54. Xiong, S., L. Zhang, and X. Lu, Conductivities enhancement of poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) transparent electrodes with diol additives. Polymer Bulletin, 2013. 70(1): p. 237-247. 55. Ghosh, S.K. and T. Pal, Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles: From Theory to Applications. Chemical Reviews, 2007. 107(11): p. 4797-4862. 56. Wu, J.-L., et al., Surface Plasmonic Effects of Metallic Nanoparticles on the Performance of Polymer Bulk Heterojunction Solar Cells. ACS Nano, 2011. 5(2): p. 959-967. 57. Zabet-Khosousi, A. and A.-A. Dhirani, Charge Transport in Nanoparticle Assemblies. Chemical Reviews, 2008. 108(10): p. 4072-4124. 58. Ghosh, S.K. and T. Pal, Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev, 2007. 107(11): p. 4797-862. 59. Nelson, J., Organic photovoltaic films. Current Opinion in Solid State and Materials Science, 2002. 6(1): p. 87-95. 60. Cheng, Y.-J., et al., Combination of Indene-C60 Bis-Adduct and Cross-Linked Fullerene Interlayer Leading to Highly Efficient Inverted Polymer Solar Cells. Journal of the American Chemical Society, 2010. 132(49): p. 17381-17383. 61. Dang, M.T., L. Hirsch, and G. Wantz, P3HT:PCBM, Best Seller in Polymer Photovoltaic Research. Advanced Materials, 2011. 23(31): p. 3597-3602. 62. Zhao, G., Y. He, and Y. Li, 6.5% Efficiency of Polymer Solar Cells Based on poly(3-hexylthiophene) and Indene-C60 Bisadduct by Device Optimization. Advanced Materials, 2010. 22(39): p. 4355-4358. 63. Li, G., et al., High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater, 2005. 4(11): p. 864-868. 64. Shrotriya, V., et al., Accurate Measurement and Characterization of Organic Solar Cells. Advanced Functional Materials, 2006. 16(15): p. 2016-2023. 65. Shrotriya, V., et al., Transition metal oxides as the buffer layer for polymer photovoltaic cells. Applied Physics Letters, 2006. 88(7): p. 073508-3. 66. Braydich-Stolle, L., et al., In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci, 2005. 88(2): p. 412-9. 67. Hsu, M.-H., et al., Erratum: ``Balanced carrier transport in organic solar cells employing embedded indium-tin-oxide nanoelectrodes'' [Appl. Phys. Lett. [bold 98], 073308 (2011)]. Applied Physics Letters, 2011. 98(11): p. 119904-1. 68. Fung, D.S. and W.H. Choy, Experimental Studies of Plasmonic Nanoparticle Effects on Organic Solar Cells, in Organic Solar Cells, W.C.H. Choy, Editor. 2013, Springer London. p. 211-242. 69. Kao, C.-S., et al., Plasmonic-enhanced performance for polymer solar cells prepared with inverted structures. Applied Physics Letters, 2012. 101(19): p. 193902-4. 70. Mihailetchi, V.D., et al., Charge Transport and Photocurrent Generation in Poly(3-hexylthiophene): Methanofullerene Bulk-Heterojunction Solar Cells. Advanced Functional Materials, 2006. 16(5): p. 699-708. 71. Mihailetchi, V.D., et al., Photocurrent Generation in Polymer-Fullerene Bulk Heterojunctions. Physical Review Letters, 2004. 93(21): p. 216601. 72. Shrotriya, V., et al., Effect of self-organization in polymer/fullerene bulk heterojunctions on solar cell performance. Applied Physics Letters, 2006. 89(6): p. 063505-3. 73. Mahmoud, M.A., et al., Plasmonic Field Enhancement of the Exciton−Exciton Annihilation Process in a Poly(p-phenyleneethynylene) Fluorescent Polymer by Ag Nanocubes. Journal of the American Chemical Society, 2010. 132(8): p. 2633-2641. 74. Huang, J.-H., et al., Wet-milled transition metal oxide nanoparticles as buffer layers for bulk heterojunction solar cells. RSC Advances, 2012. 2(19): p. 7487-7491. 75. Voroshazi, E., et al., Influence of cathode oxidation via the hole extraction layer in polymer:fullerene solar cells. Organic Electronics, 2011. 12(5): p. 736-744.
|