跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/09 22:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳鍵熙
研究生(外文):Tan, Kim-Shih
論文名稱:利用金奈米粒子激發局域性表面電漿共振
論文名稱(外文):Au Nanoparticle - Localized Surface Plasmon Resonance For Enhancing The Performance of Polymer Solar Cells
指導教授:陳方中陳方中引用關係陳瓊華陳瓊華引用關係
指導教授(外文):Chen, Fang-ChungChen, Chyong-Hua
學位類別:碩士
校院名稱:國立交通大學
系所名稱:顯示科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:84
中文關鍵詞:有機電池有機高分子太陽能電池表面電漿共振奈米粒子高效率穩定性聚(34-□乙二氧基□吩)-聚(苯乙烯磺酸)三氧化□溶液
外文關鍵詞:Organic PhotovoltaicPolymer Solar CellsLocalized Surface Plasmon ResonanceNanoparticlelonger lifetimestabilityhigh effeciencyLSPRPEDOT:PSSs-MoO3
相關次數:
  • 被引用被引用:0
  • 點閱點閱:165
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要探討金奈米粒子摻雜在三氧化□合成溶液中作為電洞傳輸層開發出高效率有機高分子太陽能電池元件.其主動層材料為poly(3-hexyl thiophene) (P3HT) and [6,6]-phenyl-C60-butyric acid methyl ester(PC60BM).實驗結果發現當我們加入10% 金奈米粒子在電洞傳輸層時,金奈米粒子有效激發侷域性表面電漿共振,此現象可在金屬奈米粒子周圍產生侷部電場增益,使得元件內的激子分離率上升,進而提升有機太陽能電池元件效率12%.最後,我們探討三氧化□溶液及聚(3,4-□乙二氧基□吩)-聚(苯乙烯磺酸)溶液兩種不同有機材料中摻雜金奈米粒子,並發現使用三氧化□可增加元件之穩定性.
In this thesis, we explored the light trapping properties of polymer solar cells (PSCs) incorporating Au nanoparticle (NPs) in the anode butter layer made of a solution- processed ammonium heptamolybdate (s-MoO3). The active layer consists of a blend of poly(3-hexyl thiophene) (P3HT) and [6,6]-phenyl-C60-butyric acid methyl ester(PC60BM). The experiment results showed that the light concentrating behavior was imposed after we had incorporated Au NPs in the device. Such enhancements can be attributed to the localized surface plasmon resonance (LSPR) induced by the metallic nanoparticles. The resulting devices exhibited a remarkable 12% enhancement in the power conversion efficiency while 10% of Au NPs was used under an illumination of AM1.5G at 100mW cm-2. The rate of exciton generation and the probability of exciton dissociation were increased. Finally, compared with PEDOT:PSS : Au NPs modified devices, PSCs with the s-MoO3:Au NPs anode buffer layer exhibit a much superior stability and longer lifetime.
中文摘要 II
ABSTRACT III
ACKNOWLEDGES Ⅳ
LIST OF FIGURES XIII
LIST OF TABLES XIIIII
CHAPTER 1 INTRODUCTION 1
1.1 GLOBAL WARMING &; ENERGY ISSUES 1
1.2 INTRODUCTION TO PHOTOVOLTAIC TECHNOLOGY 4
1.2.1 Development of PV Technology 4
1.2.2 Thin-Film Photovoltaic Technology 5
1.2.3 Generation III 7
1.3 INTRODUCTION TO POLYMER PHOTOVOLTAIC DEVICE 8
1.3.1 Device design 8
1.3.2 Basic Working Principle In Organic Solar Cell 12
1.3.3 Electrical characterization of OPVs 16
1.3.4 Solar spectrum 23
CHAPTER 2 NANOSTRUCTURED MATERIALS AND NANOTECHNOLOGY 25
2.1 INTRODUCTION OF SURFACE PLASMON RESONANCE IN NANOPARTICLE 25
2.1.1 Development of Surface Plasmon 25
2.2 BASICS OF SURFACE PLASMON 26
2.3 SURFACE PLASMON RESONANCE (SPR) IN THIN FILMS 29
2.4 DIPOLE SURFACE PLASMON RESONANCE 31
2.5 LIGHT SCATTERING BY METAL PARTICLE 33
2.6 APPLICATION OF METAL NANOPARTICLES 35
2.7 MOTIVATIONS 36
CHAPTER 3 EXPERIMENTAL METHODS 38
3.1 MATERIAL PROPERTIES AND PREPARATION 38
3.1.1 Substrate (ITO glass) 38
3.1.2 Buffer layer materials 38
3.1.3 Photoactive layer materials 42
3.1.5 Electrode materials 45
3.2 DEVICE FABRICATION 46
3.2.1 ITO substrate patterning 46
3.2.3 Deposition of buffer layer 50
3.2.4 Encapsulation Techniques 54
3.3 CHARACTERIZATION 54
3.3.1 J-V curves 54
3.3.2 Atomic Force Microscopy (AFM) 55
3.3.3 Optical Spectroscopy 56
3.3.4 IPCE curves 57
CHAPTER 4 RESULT AND DISCUSSION 59
4.1 DEVICE PERFORMANCE 59
4.2 DEVICE PHOTOVOLTAIC CHARACTERISTICS 61
4.3 PHOTOCURRENT BEHAVIOR 70
4.4 STEADY STATE PHOTOLUMINESCENCE 73
4.5 STABILITY OF THE PSCS 76
CHAPTER 5 CONCLUSIONS 77
REFERENCE 79

1. Conibeer, G., Third-generation photovoltaics. Materials Today, 2007. 10(11): p. 42-50.
2. Lu, W., et al., Preparation of silver island films with tunable surface plasmon resonance. 2012: p. 856426-856426.
3. Crabtree, G.W. and N.S. Lewis, Solar energy conversion. Physics Today, 2007. 60(3): p. 37-42.
4. Shockley, W. and H.J. Queisser, Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. Journal of Applied Physics, 1961. 32(3): p. 510-519.
5. Zhou, Y.F., M. Eck, and M. Kruger, Bulk-heterojunction hybrid solar cells based on colloidal nanocrystals and conjugated polymers. Energy &; Environmental Science, 2010. 3(12): p. 1851-1864.
6. Bredds, J.L. and J.R. Durrant, Organic Photovoltaics. Accounts of Chemical Research, 2009. 42(11): p. 1689-1690.
7. Eliseeva, S.V. and J.-C.G. Bunzli, Rare earths: jewels for functional materials of the future. New Journal of Chemistry, 2011. 35(6): p. 1165-1176.
8. Lewis, N.S., Toward cost-effective solar energy use. Science, 2007. 315(5813): p. 798-801.
9. Kirchartz, T., K. Taretto, and U. Rau, Efficiency Limits of Organic Bulk Heterojunction Solar Cells. The Journal of Physical Chemistry C, 2009. 113(41): p. 17958-17966.
10. Benanti, T.L. and D. Venkataraman, Organic solar cells: An overview focusing on active layer morphology. Photosynthesis Research, 2006. 87(1): p. 73-81.
11. Malinauskas, A., Chemical deposition of conducting polymers. Polymer, 2001. 42(9): p. 3957-3972.
12. Li, G., R. Zhu, and Y. Yang, Polymer solar cells. Nat Photon, 2012. 6(3): p. 153-161.
13. Peumans, P., A. Yakimov, and S.R. Forrest, Small molecular weight organic thin-film photodetectors and solar cells. Journal of Applied Physics, 2003. 93(7): p. 3693-3723.
14. Catchpole, K.R., S. Pillai, and K.L. Lin. Novel applications for surface plasmons in photovoltaics. in Photovoltaic Energy Conversion, 2003. Proceedings of 3rd World Conference on. 2003.
15. Bittner, E.R., J.G.S. Ramon, and S. Karabunarliev, Exciton dissociation dynamics in model donor-acceptor polymer heterojunctions. I. Energetics and spectra. The Journal of Chemical Physics, 2005. 122(21): p. 214719-9.
16. Thompson, B.C. and J.M.J. Fr□chet, Polymer–Fullerene Composite Solar Cells. Angewandte Chemie International Edition, 2008. 47(1): p. 58-77.
17. Cheng, Y.-J., S.-H. Yang, and C.-S. Hsu, Synthesis of Conjugated Polymers for Organic Solar Cell Applications. Chemical Reviews, 2009. 109(11): p. 5868-5923.
18. Feron, K., et al., Organic Solar Cells: Understanding the Role of F246;rster Resonance Energy Transfer. International Journal of Molecular Sciences, 2012. 13(12): p. 17019-17047.
19. Guo, J., et al., Charge Generation and Recombination Dynamics in Poly(3-hexylthiophene)/Fullerene Blend Films with Different Regioregularities and Morphologies. Journal of the American Chemical Society, 2010. 132(17): p. 6154-6164.
20. Huijser, A., et al., An experimental study on the molecular organization and exciton diffusion in a bilayer of a porphyrin and poly(3-hexylthiophene). Journal of Applied Physics, 2008. 104(3): p. 034505-10.
21. Benson-Smith, J.J., et al., Formation of a Ground-State Charge-Transfer Complex in Polyfluorene//[6,6]-Phenyl-C61 Butyric Acid Methyl Ester (PCBM) Blend Films and Its Role in the Function of Polymer/PCBM Solar Cells. Advanced Functional Materials, 2007. 17(3): p. 451-457.
22. NOLASCO, J.C., et al., ELECTRICAL PROPERTIES OF P3HT (POLY [3-HEXYLTHIOPHENE])/n-TYPE CRYSTALLINE SILICON (n-c-Si) SOLAR CELLS. International Journal of High Speed Electronics and Systems, 2011. 20(04): p. 749-773.
23. Walter, M.G., A.B. Rudine, and C.C. Wamser, Porphyrins and phthalocyanines in solar photovoltaic cells. Journal of Porphyrins and Phthalocyanines, 2010. 14(09): p. 759-792.
24. Waldauf, C., et al., Physics of organic bulk heterojunction devices for photovoltaic applications. Journal of Applied Physics, 2006. 99(10): p. 104503-6.
25. Liao, K.-S., et al., Designs and Architectures for the Next Generation of Organic Solar Cells. Energies, 2010. 3(6): p. 1212-1250.
26. Mandoc, M.M., et al., Origin of the Reduced Fill Factor and Photocurrent in MDMO-PPV:PCNEPV All-Polymer Solar Cells. Advanced Functional Materials, 2007. 17(13): p. 2167-2173.
27. Moliton, A. and J.-M. Nunzi, How to model the behaviour of organic photovoltaic cells. Polymer International, 2006. 55(6): p. 583-600.
28. Jo, J., et al., Three-Dimensional Bulk Heterojunction Morphology for Achieving High Internal Quantum Efficiency in Polymer Solar Cells. Advanced Functional Materials, 2009. 19(15): p. 2398-2406.
29. Rostalski, J. and D. Meissner, Monochromatic versus solar efficiencies of organic solar cells. Solar Energy Materials and Solar Cells, 2000. 61(1): p. 87-95.
30. Rohde, R.A. Solar spectrum. 9 October 2008; Available from: http://www.globalwarmingart.com/wiki/File:Solar_Spectrum_png.
31. Bainbridge, W.S., Nanotechnology: Societal Implications—Individual Perspectives.
32. Patra, C.R., et al., Application of Gold Nanoparticles for Targeted Therapy in Cancer. Journal of Biomedical Nanotechnology, 2008. 4(2): p. 99-132.
33. Haes, A.J., et al., Using solution-phase nanoparticles, surface-confined nanoparticle arrays and single nanoparticles as biological sensing platforms. J Fluoresc, 2004. 14(4): p. 355-67.
34. Wang, L., et al., Sensing Arrays Constructed from Nanoparticle Thin Films and Interdigitated Microelectrodes. Sensors, 2006. 6(6): p. 667-679.
35. Spinelli, P. and A. Polman, Prospects of near-field plasmonic absorption enhancement in semiconductor materials using embedded Ag nanoparticles. Opt. Express, 2012. 20(S5): p. A641-A654.
36. Kasture, S., et al., Near dispersion-less surface plasmon polariton resonances at a metal-dielectric interface with patterned dielectric on top. Applied Physics Letters, 2012. 101(9): p. 091602-091602-4.
37. Homola, J., Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species. Chemical Reviews, 2008. 108(2): p. 462-493.
38. Barnes, W.L., A. Dereux, and T.W. Ebbesen, Surface plasmon subwavelength optics. Nature, 2003. 424(6950): p. 824-830.
39. Spatially resolved quantum plasmon modes in metallic nano-films from first-principles. Physical Review B, 2012. 86(24).
40. Kelly, K.L., et al., The Optical Properties of Metal Nanoparticles:  The Influence of Size, Shape, and Dielectric Environment. The Journal of Physical Chemistry B, 2002. 107(3): p. 668-677.
41. Lal, S., S. Link, and N.J. Halas, Nano-optics from sensing to waveguiding. Nat Photon, 2007. 1(11): p. 641-648.
42. Hao, E. and G.C. Schatz, Electromagnetic fields around silver nanoparticles and dimers. The Journal of Chemical Physics, 2004. 120(1): p. 357-366.
43. Catchpole, K.R. and A. Polman, Plasmonic solar cells. Opt. Express, 2008. 16(26): p. 21793-21800.
44. Catchpole, K.R. and A. Polman, Design principles for particle plasmon enhanced solar cells. Applied Physics Letters, 2008. 93(19): p. 191113-3.
45. Sundararajan, S.P., et al., Nanoparticle-Induced Enhancement and Suppression of Photocurrent in a Silicon Photodiode. Nano Letters, 2008. 8(2): p. 624-630.
46. Mertens, H., et al., Infrared surface plasmons in two-dimensional silver nanoparticle arrays in silicon. Applied Physics Letters, 2004. 85(8): p. 1317-1319.
47. Mody, V.V., et al., Introduction to metallic nanoparticles. J Pharm Bioallied Sci, 2010. 2(4): p. 282-9.
48. Dissanayake, D.M.N.M., B. Roberts, and P.C. Ku, Plasmonic backscattering enhanced inverted photovoltaics. Applied Physics Letters, 2011. 99(11): p. 113306-3.
49. Yang, J., et al., Plasmonic Polymer Tandem Solar Cell. ACS Nano, 2011. 5(8): p. 6210-6217.
50. Chen, L.-M., et al., Interface investigation and engineering - achieving high performance polymer photovoltaic devices. Journal of Materials Chemistry, 2010. 20(13): p. 2575-2598.
51. Yenjai, S., et al., Selective cleavage of pepsin by molybdenum metallopeptidase. Biochemical and Biophysical Research Communications, 2012. 419(1): p. 126-129.
52. Nardes, A.M., et al., Conductivity, work function, and environmental stability of PEDOT:PSS thin films treated with sorbitol. Organic Electronics, 2008. 9(5): p. 727-734.
53. Hung, L.S. and C.H. Chen, Recent progress of molecular organic electroluminescent materials and devices. Materials Science and Engineering: R: Reports, 2002. 39(5): p. 143-222.
54. Xiong, S., L. Zhang, and X. Lu, Conductivities enhancement of poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) transparent electrodes with diol additives. Polymer Bulletin, 2013. 70(1): p. 237-247.
55. Ghosh, S.K. and T. Pal, Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles:  From Theory to Applications. Chemical Reviews, 2007. 107(11): p. 4797-4862.
56. Wu, J.-L., et al., Surface Plasmonic Effects of Metallic Nanoparticles on the Performance of Polymer Bulk Heterojunction Solar Cells. ACS Nano, 2011. 5(2): p. 959-967.
57. Zabet-Khosousi, A. and A.-A. Dhirani, Charge Transport in Nanoparticle Assemblies. Chemical Reviews, 2008. 108(10): p. 4072-4124.
58. Ghosh, S.K. and T. Pal, Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev, 2007. 107(11): p. 4797-862.
59. Nelson, J., Organic photovoltaic films. Current Opinion in Solid State and Materials Science, 2002. 6(1): p. 87-95.
60. Cheng, Y.-J., et al., Combination of Indene-C60 Bis-Adduct and Cross-Linked Fullerene Interlayer Leading to Highly Efficient Inverted Polymer Solar Cells. Journal of the American Chemical Society, 2010. 132(49): p. 17381-17383.
61. Dang, M.T., L. Hirsch, and G. Wantz, P3HT:PCBM, Best Seller in Polymer Photovoltaic Research. Advanced Materials, 2011. 23(31): p. 3597-3602.
62. Zhao, G., Y. He, and Y. Li, 6.5% Efficiency of Polymer Solar Cells Based on poly(3-hexylthiophene) and Indene-C60 Bisadduct by Device Optimization. Advanced Materials, 2010. 22(39): p. 4355-4358.
63. Li, G., et al., High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater, 2005. 4(11): p. 864-868.
64. Shrotriya, V., et al., Accurate Measurement and Characterization of Organic Solar Cells. Advanced Functional Materials, 2006. 16(15): p. 2016-2023.
65. Shrotriya, V., et al., Transition metal oxides as the buffer layer for polymer photovoltaic cells. Applied Physics Letters, 2006. 88(7): p. 073508-3.
66. Braydich-Stolle, L., et al., In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci, 2005. 88(2): p. 412-9.
67. Hsu, M.-H., et al., Erratum: ``Balanced carrier transport in organic solar cells employing embedded indium-tin-oxide nanoelectrodes'' [Appl. Phys. Lett. [bold 98], 073308 (2011)]. Applied Physics Letters, 2011. 98(11): p. 119904-1.
68. Fung, D.S. and W.H. Choy, Experimental Studies of Plasmonic Nanoparticle Effects on Organic Solar Cells, in Organic Solar Cells, W.C.H. Choy, Editor. 2013, Springer London. p. 211-242.
69. Kao, C.-S., et al., Plasmonic-enhanced performance for polymer solar cells prepared with inverted structures. Applied Physics Letters, 2012. 101(19): p. 193902-4.
70. Mihailetchi, V.D., et al., Charge Transport and Photocurrent Generation in Poly(3-hexylthiophene): Methanofullerene Bulk-Heterojunction Solar Cells. Advanced Functional Materials, 2006. 16(5): p. 699-708.
71. Mihailetchi, V.D., et al., Photocurrent Generation in Polymer-Fullerene Bulk Heterojunctions. Physical Review Letters, 2004. 93(21): p. 216601.
72. Shrotriya, V., et al., Effect of self-organization in polymer/fullerene bulk heterojunctions on solar cell performance. Applied Physics Letters, 2006. 89(6): p. 063505-3.
73. Mahmoud, M.A., et al., Plasmonic Field Enhancement of the Exciton−Exciton Annihilation Process in a Poly(p-phenyleneethynylene) Fluorescent Polymer by Ag Nanocubes. Journal of the American Chemical Society, 2010. 132(8): p. 2633-2641.
74. Huang, J.-H., et al., Wet-milled transition metal oxide nanoparticles as buffer layers for bulk heterojunction solar cells. RSC Advances, 2012. 2(19): p. 7487-7491.
75. Voroshazi, E., et al., Influence of cathode oxidation via the hole extraction layer in polymer:fullerene solar cells. Organic Electronics, 2011. 12(5): p. 736-744.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊