跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/11 02:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊子寬
研究生(外文):Yang, Tzu-Kuan
論文名稱:應用於銅銦鎵硒薄膜太陽能元件之吸收層製程技術開發與研究
論文名稱(外文):Investigation of absorber layer fabrication technology applied in CIGS thin film solar cells
指導教授:謝漢萍謝漢萍引用關係
指導教授(外文):Shieh, Han-Ping
學位類別:碩士
校院名稱:國立交通大學
系所名稱:顯示科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:92
中文關鍵詞:銅銦鎵硒
外文關鍵詞:CIGS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:99
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
銅銦鎵硒是一種具有潛力的薄膜太陽能電池吸收層材料。然而,因其為複雜的多元元素組成,二元相的生成尚未被有效地控制及理解,目前仍未有一標準且適合量產化的製程。本論文經由銅硒及銦硒二元化合物的研究結果,提出了一種適合量產且容易進行的硒化製程。論文中針對二元相的生成有詳細地探討,透過二元相的研究分析銅銦鎵硒四元相可能的成長路徑。經由二元相的研究結果設計由β-Cu2-xSe及γ-(In,Ga)2Se3所形成的銅銦鎵硒薄膜具有良好的特性,包含附著性佳、平整的表面形態、及均勻緻密且大顆的晶粒,其優選晶相為(220/204)/(112)。由X光繞射分析的結果,兩晶相強度的比值(220/204)/(112)為0.94。此外,論文中所提出的硒化製程法也減緩了在典型一階段硒化製程所製作出的銅銦鎵硒薄膜會遇到的化學劑量組成比及殘餘二元相的問題。
Cu(In,Ga)Se2 (CIGS) is the promising material for thin-film solar cell technology. However, lack of feasible fabrication process for mass-production and complicated binary phases in the CIGS films are the issues limiting the practical applications of CIGS. An simple selenization process was proposed according to the investigation of the Cu-Se and In-Se binary phases. The details on the formation of the binary phases as well as the formation path of CIGS are presented. The resulted CIGS films grown by the formation path of β-Cu2-xSe + γ-(In,Ga)2Se3 exhibited good adhesion, smooth surface, as well as large, uniform, and densely packed crystals with preferred (220/204)/(112) orientation. The ratio of (220/204)/(112) was 0.94. In addition, the issues of non-stoichiometric elemental composition and remaining binary phases found in the typical one-step selenized CIGS thin films were mitigated.
Chapter 1 1
1.1 Preface 1
1.2 Photovoltaic technology 3
1.3 Cu(In,Ga)Se2 thin film solar cells 6
1.3.1 Advantages of CIGS 6
1.3.2 CIGS fabrication methods 7
1.3.3 Current issues in CIGS fabrication 10
1.4 Motivations and Objectives 11
1.5 Organization of this thesis 12
Chapter 2 13
2.1 The physics of solar cells 13
2.2 CIGS solar cells structure 17
2.2.1 Substrate 18
2.2.2 Back contact metal 19
2.2.3 CIGS absorber layer 19
2.2.4 Buffer layer 20
2.2.5 Window layer 21
2.3 Material and characterizations 22
2.3.1 Chalcopyrite structure 22
2.3.2 Cu/(In+Ga) 25
2.3.3 Ga/(In+Ga) 26
2.4 Summary 27
Chapter 3 29
3.1 CIGS deposition system 29
3.1.1 Sputter system 30
3.1.2 Selenization system 32
3.2 Analytical technologies 35
3.2.1 Scanning electron microscopy (SEM) 36
3.2.2 Energy dispersive X-ray spectroscopy (EDS) 37
3.2.3 X-ray diffraction (XRD) 39
3.2.4 Raman scattering (RS) 40
3.3 CIGS fabrication process 42
3.3.1 Substrate cleaning 42
3.3.2 Back contact metal deposition 42
3.3.3 CIGS absorber deposition 43
3.4 Summary 45
Chapter 4 47
4.1 Mo-coated substrates 47
4.2 Improvements in precursors by adjusting the deposition process 53
4.3 Investigation of one-step selenization 58
4.4 Two-step selenization 68
4.4.1 Cu-Se phase 68
4.4.2 In-Se phase 73
4.4.3 Investigation of two-step selenization 78
Chapter 5 82
5.1 Conclusions 82
5.2 Future works 83
References 87

[1] The Intergovernmental Panel on Climate Change (IPCC). (2007). The Fourth Assessment Synthesis Report of the Intergovernmental Panel on Climate Change. Retrieved from http://www.ipcc.ch/publications_and_data/ar4/syr/en/contents.html
[2] International Energy Agency (IEA). (2011). Clean Energy Progress Report. Retrieved from http:// www.iea.org.
[3] D. Williams. (2010). Sun Fact Sheet. Retrieved from http://nssdc.gsfc.nasa.gov/ planetary/factsheet/ sunfact.html.
[4] M. Green, Solar Cells: Operating Principles, Technology and System Applications, The University of New South Wales: Rosebery, 1992.
[5] K. Chorpa and S. Das, Thin Film Solar Cells, Plenum: New York, 1983.
[6] J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, Appl. Phys. Lett., 73 (1998) 1991.
[7] O. Schultz, S. W. Glunz, and G. P. Willeke, Prog. in Photovoltaics: Research and Applications, 12 (2004) 553.
[8] J. Bailat, L. Fesquet, J. Orhan, Y. Djeridane, B. Wolf, P. Madliger, J. Steinhauser, S. Benagli, D. Borrello, L. Castens, G. Monteduro, M. Marmelo, B. Dehbozorghi, E. Valltat-Sauvain, X. Multone, D. Romang, J. Boucher, J. Meier, and U. Kroll, 25th European Photovoltaic Solar Energy Conference, Valencia, Sept. 2010.
[9] I. Repins, M. Contreras, Y. Romero, Y. Yan, W. Metzger, J. Li, S. Johnston, B. Egaas, C. DeHart, J. Scharf, B. E. McCandless, and R. Noufi, 33rd IEEE Photovolt. Spec. Conf., (2008) 33.
[10] http://www.zsw-bw.de/fileadmin/ZSW_files/Infoportal/Presseinformationen/docs/ pi11-2010-e_ZSW-Weltrekord-DS-CIGS.pdf
[11] X. Wu, J. C. Keane, R. G. Dhere, C. DeHart, A. Duda, T. A. Gessert, S. Asher, D. H. Levi, and P. Sheldon, 17th European Photovoltaic Solar Energy Conference, (2001) 995.
[12] http://www.greentechmedia.com/articles/read/stealthyalta-devices-next-gen-pv- challenging-the-status-quo/
[13] Best Research-Cell Efficiencies. http://www.nrel.gov/pv.
[14] C. Eberspacher, K. Pauls, and J. Serra, 29th IEEE Photovolt. Spec. Conf., (2002) 1792.
[15] B. M. Basol, Thin Solid Films, 361 (2000) 514.
[16] B. J. Brown and C. W. Bates, Thin Solid Films, 188 (1990) 301.
[17] W. E. Devaney, W. S. Chen, J. M. Stewart, and R. A. Mickelsen, IEEE Trans. Electron Dev., 37 (1990) 428.
[18] M. Marudachalam, H. Hichri, R. Klenk, R. W. Birkmire, W. N. Shafarman, and J. M. Schultz, Appl. Phys. Lett., 67 (1995) 3978.
[19] A. M. Hermann, C. Gonzalez, P. A. Ramakrishnan, D. Balzar, N. Popa, B. Rice, C. H. Marshall, J. N. Hilfiker, T. Tiwald, P. J. Sebastian, M. E. Calixto, and R. N. Bhattacharya, Sol. Energy Mater. Sol. Cells, 70 (2001) 345.
[20] J. Zank, M. Mehlin, and H. P. Fritz, Thin Solid Films, 286 (1996) 259.
[21] K. T. Ramakrishna, P. K. Datta, and M. J. Carter, Phys. Stat. Sol. (a), 182 (2000) 679.
[22] R. Caballero, and C. Guillén, Thin Solid Films, 403-404 (2002) 107.
[23] M. Marudachalam, R. W. Birkmire, H. Hichri, J. M. Schultz, A. Swartzlander, and M. M. Al-Jassim, J. Appl. Phys., 82 (1997) 2896.
[24] Ö. F. Yüksel, B. M. Başol, H. Safak, and H. Karabiyik, Appl. Phys. A, 73 (2001) 387.
[25] V. Alberts, M. Klenk, and E. Bucher, Thin Solid Films, 387 (2001) 44.
[26] K. Kushiya, Sol. Energy Mater. Sol. Cells, 93 (2009) 1037.
[27] T. Nakada, K. Migita, S. Niki, and A. Kunioka, Jpn. J. Phys., 34 (1995) 4715.
[28] E. Becquerel, Comptes Rendus, 9 (1839) 561.
[29] M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, Prog. Photovolt: Res. Appl., 19 (2011) 84.
[30] B. Canava, J. Vigneron, A. Etcheberry, D. Guimard, P.P. Grand, J.-F. Guillemoles, D. Lincot, S. Ould Saad Hamatly, Z. Djebbour, and D. Mencaraglia, Thin Solid Films, 431–432 (2003) 289.
[31] J. Hedstrom, H. Ohlsen, M. Bodegard, A. Klyner, L. Stolt, D. Hariskos, M. Ruckh, H.-W. Schock, 23rd IEEE Photovolt. Spec. Conf., (1993) 364.
[32] L. Stolt, J. Hedström, J. Kessler, M. Ruckh, K.-O. Velthaus, and H.-W. Schock, Appl. Phys. Lett., 62 (1993) 597.
[33] M. Bodeg Ård, K. Granath, and L. Stolt, Thin Solid Films, 361 (2000) 9.
[34] M. Lammer, U. Klemm, and M. Powalla, Thin Solid Films, 387 (2001) 33.
[35] T. Nakada, D. Iga, H. Ohbo, and A. Kunioka, Jpn. J. Appl. Phys., 36 (1997) 732.
[36] K. Orgassa, H. W. Schock, and J. H. Werner, Thin Solid Films, 431-432 (2003) 387.
[37] S. Mahieu, W. P. Leroy, K. Van Aeken, M. Wolter, J. Colaux, S. Lucas, G. Abadias, P. Matthys, and D. Depla, Solar Energy, 85 (2011) 538.
[38] D. Abou-Ras, G. Kostorz, D. Bremaud, M. Kälin, F. V. Kurdesau, A. N. Tiwari, and M. Döbeli, Thin Solid Films, 480-481 (2005) 433.
[39] M. A. Contreras, T. Nakada, M. Hongo, A. O. Pudov, and J. R. Sites, 3rd World Conference of Photovoltaic Energy Conversion, (2003) 570.
[40] C. Platzer-Bjorkman, J. Kessler, and L. Stolt, 3rd World Conference of Photovoltaic Energy Conversion, (2003) 461.
[41] H.-J. Muffler, M. Baer, C.-H. Fischer, R. Gay, F. Karg, and M. C. Lux-Steiner, 28th IEEE Photovoltaic Specialist Conference, (2000) 610.
[42] C. H. Chang, A. Davydov, B. J. Stanbery, and T. J. Anderson, 25th IEEE Photovoltaic Specialists Conference, (1996) 849.
[43] http://www.lavision.de/cms_images/techniques/Raman_setup.jpg
[44] T. Schlenker, V. Laptev, H. W. Schock, and J. H. Werner, Thin Solid Films, 480-481 (2005) 29-32.
[45] G. Gordillo, M. Grizález, and L. C. Hernandez, Sol. Energy Mater. Sol. Cells, 51 (1998) 327.
[46] P. Scherrer, Göttinger Nachrichten Gesell., 2 (1918) 98.
[47] B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction, 3rd Ed., Prentice-Hall Inc., (2001) 167.
[48] J. P. Heinß, F. Händel, T. Meyer, and R. Würz, Plasma Process. Polym., 6 (2009) S29.
[49] W. Li, Y. Sun, W. Liu, and L. Zhou, Solar Energy, 80 (2005) 191.
[50] A.L.N. Stevels, and F. Jellinek, Recl. Trav. Chim., 90 (1971) 273.
[51] G. Brun, J. C. Tedenac, and M. Maurin, Mater. Res. Bull., 17 (1982) 379.
[52] B. Minceva-Sukarova, M. Najdoski, I. Grozdanov, and C. J. Chunnilall, J. Mol. Struct., 410-411 (1997) 267.
[53] S. Stølen, H. Fjellvåg, F. Grønvold, J. T. Sipowska, and E. F. Westrum Jr., J. Chem. Thermodyn., 28 (1996) 753.
[54] J. R. Tuttle, M. Contreras, M. H. Bode, D. Niles, D. S. Albin, R. Matson, A. M. Gabor, A. Tennant, A. Duda, and R. Noufi, J. Appl. Phys., 77 (1995) 153.
[55] B. Dimmler, H. Dittrich, and H. W. Schock, 20th IEEE photovolt. Spec. Conf., (1988) 1426.
[56] K. Kushiya, A. Shimizu, A. Yamada, and M. Konagai, Jpn. J. Appl. Phys., 34 (1995) 54.
[57] V. Izquierdo-Roca, E. Saucedo, C. M. Ruiz, X. Fontane, L. Calvo-Barrio, J. Álvarez-Garcia, P.-P. Grand, J. S. Jaime-Ferrer, A. Pérez-Rodríguez, J. R. Morante, and V. Bermudez, Phys. Status Solidi (A), 206 (2009) 1001.
[58] JCPDS (File No. 89-5649).
[59] W. Liu, J.-G. Tien, Q. He, F.-Y. Li, C.-J. Li, and Y. Sun, J. Phys. D: Appl. Phys., 42 (2009) 125303.
[60] W. K. Kim, E. A. Payzant, S. Kim, S. A. Speakman, O. D. Crisalle, and T. J. Anderson, J. Cryst. Growth, 310 (2008) 2987.
[61] T. Ohtani, Y. Tachibana, J. Ogura, T. Miyake, Y. Okada, and Y. Yokota, J. Alloy. Compd., 279 (1998) 136.
[62] R. D. Heyding, Can. J. Chem., 44 (1966) 1233
[63] Cu-Se phase diagram. http://www.solarnenergy.com/contents_img/619372.jpg.
[64] A. Likforman, P. H. Fourcroy, M. Guittard, J. Flahaut, R. Poirier, and N. Szydlo, J. Solid State Chem., 33 (1980) 91.
[65] JCPDS (File No. 07-2138).
[66] J. Ye, S. Soeda, Y. Nakamura, and O. Nittono, Jpn. J. Appl. Phys., 37 (1998) 4264.
[67] C. Amory, J. C. Bernède, and S. Marsillac, J. Appl. Phys., 94 (2003) 6945.
[68] H. D. Lutz, M. Fischer, H. P. Baldus, and R. Blachnik, J. Less-Common Metals, 143 (1988) 83.
[69] C. Manolikas, J. Solid State Chem., 74 (1988) 319.
[70] K. Kambas, C. Julien, M. Jouanne, A Likforman, and M. Guittard, Phys. Stat. Sol. (b), 124 (1984) K105.
[71] I. Watanabe and T. Yamamoto, Jpn. J. Appl. Phys., 24 (1985) 1282.
[72] In-Se phase diagram. http://www.solarnenergy.com/contents_img/741506.jpg.
[73] JCPDS (File No. 35-1102).
[74] M. S. Kim, R. B. V. Chalapathy, K. H. Yoon, and B. T. Ahn, J. Electrochem. Soc., 157 (2010) B154.
[75] G. S. Chen, J. C. Yang, Y. C. Chan, L. C. Yang, and W. Huang, Sol. Energy Mater. Sol. Cells, 93 (2009) 1351.
[76] V. Albert, J. Titus, and R. W. Birkmire, Thin Solid Films, 451-452 (2004) 207.
[77] M. Marudachalam, R. W. Birkmire, and H. Hichri, J. Appl. Phys., 82 (1997) 2896.
[78] W. K. Kim, G. M. Hanket, and W. N. Shafarman, 34th IEEE Photovolt. Spec. Conf., (2009) 844.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文