跳到主要內容

臺灣博碩士論文加值系統

(44.192.92.49) 您好!臺灣時間:2023/06/08 07:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡勝帆
研究生(外文):Tsai, Sheng-Fan
論文名稱:在光互連系統中採用垂直共振腔面射型雷射
論文名稱(外文):Employing Vertical-Cavity Surface-Emitting Lasers for optical interconnects
指導教授:陳智弘陳智弘引用關係
指導教授(外文):Chen, Jye-Hong
學位類別:碩士
校院名稱:國立交通大學
系所名稱:顯示科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:45
中文關鍵詞:光互連垂直共振腔面射型雷射
外文關鍵詞:optical interconnectVCSEL
相關次數:
  • 被引用被引用:0
  • 點閱點閱:143
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在此篇論文中,我們示範了新穎垂直共振腔面射型雷射(VCSELs)的架構。首先,在OOK加上等化器或正交多頻多工(OFDM)調製下,我們使用最佳化設計過的高速與超低功率效能多個模態的VCSEL,波長在850奈米,在多模光纖下傳輸,成功實現了超低能源數據距離比分別為163(292) 和 106 fJ⁄(bit∙km)。緊接著,我們使用單一模態的VCSEL,波長一樣在850奈米,這顆VCSEL有著非常高的輸出功率(6.7 mW; 側模抑制比(SMSR): 30 dB),同樣地,使用OFDM調製在多模光纖下傳輸,我們成功達到新紀錄的速率×距離(bit-rate distance products) (26 Gbps×3.5 km)。
In this thesis, we demonstrate novel structure of vertical-cavity surface-emitting lasers (VCSELs). First, we use of optimized design 850-nm VCSEL which is multi-mode laser for high-speed with ultra-low power consumption performance under On-off keying (OOK) modulation with FFE/DFE equalization or OFDM modulation format, ultra-low EDDR of 163(292) and 106 fJ⁄(bit∙km) through OM4 multi-mode fiber (MMF) transmissions are successfully achieved. Second, we used a fundamental single-mode 850-nm VCSEL with record-high single-mode output power (6.7 mW; SMSR: 30 dB), and record-high bit-rate distance products (26 Gbps×3.5 km) for OM4 multi-mode fiber (MMF) transmission under OFDM modulation formats.
Acknowledgements ii
Chinese Abstract iii
English Abstract iv
List of Figures vii
List of Tables ix
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation 3
1.2.1 Optical vs. Electrical Interconnects 4
1.2.2 VCSELs vs. Edge-Emitting Lasers (EELs) 5
1.2.3 Multi-mode fiber (MMF) vs. Single-mode fiber (SMF) 7
Chapter 2 Physical Principles and VCSEL Structure 8
2.1 Rate Equations 8
2.2 Device Structure and Fabrication 11
Chapter 3 Introduction of the Equalizer 14
3.1 Inter-symbol Interference 14
3.2 Equalizers 15
3.2.1 Symbol-Spaced Equalizer (Feed-Forward Equalizer) 16
3.2.2 Decision-Feedback Equalizer 17
Chapter 4 OFDM 19
4.1 Orthogonal Frequency Division Multiplexing 19
4.2 Comparison between OFDM and OOK 20
4.2.1 Advantages of OFDM 21
4.2.2 Disadvantages of OFDM 21
Chapter 5 Experimental Results 22
5.1 VCSEL Characteristics 22
5.2 FFE and DFE 27
5.3 OFDM for device A 30
5.4 OFDM for device B 34
Chapter 6 Conclusions and Outlooks 39
6.1 Conclusions 39
6.2 Outlooks 39
References …………………………………………………………………………..41

[1] P. Savolainen and K. Kulojarvi, “What implications will the transfer from desktop to mobile have on materials?,” Proc. Adv. Packaging Materials, vol. 14-17, pp. 214-217, March, 1999.
[2] C. Labovitz et al., ATLAS Internet Observatory 2009 Annual Report; http://www.nanog.org/meetings/nanog47/presentations/Monday/Labovitz_ObserveReport_N47_Mon.pdf
[3] C. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: What’s needed for datacenter network operations,” IEEE Commun. Mag., vol. 48, no. 7, pp. 32–39, Jul. 2010
[4] V. Vusirikala et al., Drivers and Applications of Optical Technologies for Internet Data Centre Networks, Proc. of OFC/NFOEC 2011, Los Angeles, CA, March 2011.
[5] L. A. Barroso and U. Hölzle, The Datacenter as a Computer — An Introduction to the Design of Warehouse-Scale Machines, Morgan &; Claypool, 2009. http://www.morganclaypool.com/doi/pdf/10.2200/S00193ED1V01Y200905CAC006
[6] How Clean is Your Cloud? GreenDataProject, available online at: http://www.cloudtweaks.com/2012/04/greenpeace-report-how-clean-is-your-cloud/
[7] C. Kachris, AthensInfromation Technology (AIT), “ Optical interconnection networks for data centers” ONDM 2013
[8] IEEE P802.3ba Jul. (2009).
[9] D. A. B. Miller and H. M. Özaktas, “Limit to the Bit-Rate Capacity of Electrical Interconnects from the Aspect Ratio of the System Architecture,” Journal of Parallel and Distributed Computing, no. 41, 1997.
[10] D.A.B. Miller, "Physical Reasons for Optical Interconnection", Int. J. Optoelectronics 11, 155-168 (1997).
[11] M. Jungo, Spatiotemporal vertical-cavity surface-emitting laser model for advanced simulations of optical links, 2003 :Swiss Federal Institute of Technology
[12] J. A. Kash, “Internal optical interconnects in next generation high performance servers,” IEEE Avion. Fiber-Optics Photon., pp. 29–30, Sep. 2005.
[13] http://opticalcomponents.blogspot.tw/2011/06/vcsel-advantage.html
[14] Tony Irujo, Sales Engineer and John Kamino, Product Manager, “Multimode or Single-Mode Fiber?” http://www.ofsoptics.com/resources/MultimodeorSingle-Mode.pdf
[15] L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, John Wiley &; Sons, New York (1995).
[16] Dalal, Ravindra Vinod, “Investigation of high linearity DFB lasers for analog communications,” Massachusetts Institute of Technology, USA, 1998.
[17] Jin-Wei Shi, Jhih-Cheng Yan, Jhih-Min Wun, Jason (Jyehong) Chen, and Ying-Jay Yang “Oxide-Relief and Zn-Diffusion 850 nm Vertical-Cavity Surface-Emitting Lasers with Extremely Low Energy-to-Data-Rate Ratios for 40 Gbit/sec Operations,” to be published in IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 2, March/April 2013.
[18] J.-W. Shi, W.-C. Weng, F.-M. Kuo, Ying-Jay Yang, S. Pinches, M. Geen, A. Joel, “High-Performance Zn-Diffusion 850-nm Vertical-Cavity Surface-Emitting Lasers With Strained InAlGaAs Multiple Quantum Wells,” IEEE Photonics Journal, vol. 2, no. 6, pp. 960-966, Dec., 2010.
[19] A. Larsson, P. Westbergh, J. Gustavsson, A. Haglund, B. Kogel, High-speed VCSELs for short reach communication,Semicond. Sci. Technol. 26, p. 014017, 2010.
[20] P. Moser, W. Hofmann, P. Wolf, J. A. Lott, G. Larisch, A. Payusov, N. N. Ledentsov, and D. Bimberg, “81 fJ/bit energy-to-data ratio of 850-nm vertical-cavity surface-emitting lasers for optical interconnects,” Appl. Phys. Lett., vol. 98, no. 23, p. 231106, Jun. 2011.
[21] P. Moser, P. Wolf, A. Mutig, G. Larisch, W. Unrau, W. Hofmann, and D. Bimberg, “85 ℃ error-free operation at 38 Gb/s of oxide-confined 980-nm vertical-cavity surface-emitting lasers,” Appl. Phys. Lett., vol. 100, no. 8, p. 081103, Feb., 2012.
[22] S. Xie, R. Herrick, G. D. Brabander, W. Widjaja, U. Koelle, A.-N. Cheng, L. Giovane, F. Hu, M. Keever, T. Osentowski,
[23] S. McHugo, M. Mayonte, S. Kim, D. Chamberlin, S. J. Rosner, and G. Girolami, BReliability and failure mechanisms of oxide VCSELs in non-hermetic environments,[ Proc. SPIE, vol. 4994, pp. 173–180, 2003.
[24] J.-W. Shi, C.-C. Chen, Y.-S. Wu, S.-H. Guol, and Ying-Jay Yang, “The Influence of Zn-Diffusion Depth on the Static and Dynamic Behaviors of Zn-Diffusion High-Speed Vertical-Cavity Surface-Emitting Lasers at a 850nm Wavelength,” IEEE J. Quantum, Electron., vol. 45, pp. 800-806, July, 2009.
[25] J.-W. Shi, C.-C. Chen, Y.-S. Wu, S.-H. Guol, and Ying-Jay Yang, “High-Power and High-Speed Zn-Diffusion Single Fundamental-Mode Vertical-Cavity Surface-Emitting Lasers at 850nm Wavelength,” IEEE Photon. Technol. Lett., vol. 20, pp.1121-1123, July, 2008.
[26] Intuitive Guide to Principles of Communications: http://complextoreal.com/
[27] Edward A. Lee, David G. Messerschmitt, Digital Communication, Kluwer Academic Publishers, Boston, 1988.
[28] R. W. Chang, 'Synthesis of Band-Limited Orthogonal Signals for. Multichannel Data Transmission,' Bell Syst. Tech. J., vol. 45, pp.1,775-1,796, Dec. 1966.
[29] J. Armstrong, “OFDM for optical communications,” J. Lightwave Technol., vol. 27, no. 1, pp. 189-204, Feb. 2009.
[30] Wei, J.L.; Ingham, J.D.; Cunningham, D.G.; Penty, R.V.; White, I.H. "Performance and Power Dissipation Comparisons Between 28 Gb/s NRZ, PAM, CAP and Optical OFDM Systems for Data Communication Applications", Lightwave Technology, Journal of, On page(s): 3273 - 3280 Volume: 30, Issue: 20, Oct.15, 2012.
[31] A. V. Rylyakov, C. L. Schow, B. G. Lee, F. E. Doany, C. Baks, and J. A. Kash, “Transmitter Pre-Distortion for Simultaneous Improvements in Bit-Rate, Sensitivity, Jitter, and Power Efficiency in 20 Gb/s CMOS-driven VCSEL Links,” IEEE J. of Lightw. Technol., vol.30, no.4, pp.399-405, Feb. 2012.
[32] P. Moser, J. A. Lott, P. Wolf, G. Larisch, A. S. Payusov, N. N. Ledentsov, W. Hofmann, and D. Bimberg, “99 fJ/(bit km) energy to data-distance ratio at 17 Gb/s across 1 km of multimode optical fiber with 850-nm singlemode VCSELs,” IEEE Photon. Technol. Lett., vol. 24, no. 1, pp. 19–21, Jan. 2012.
[33] D. Molin and P. Sillard, "Low Bending Sensitivity of Regular OM3/OM4 Fibers in 10GbE Applications," Proc. Optical Fiber Communication Conference, JThA55 (2010).
[34] P. Pepeljugoski, D. Kuchta, Y. Kwark, P. Pleunis, and G. Kuyt,“15.6-Gb/s transmission over 1 km of next generation multimodefiber,” IEEE Photon. Tech. Lett., vol. 14, no. 5, pp. 717–719, May 2002.
[35] G. Giaretta, R. Michalzik, and A. J. Ritger, “Long distance (2.8 km), short wavelength (0.85 m) data transmission at 10 Gb/sec over new generation high bandwidth multimode fiber,” in Proc. Conf. Lasers Electro-Optics, San Francisco, CA, May 2000, pp. 678–679.
[36] R. Safaisini, K. Szczerba, E. Haglund, P. Westbergh, J. S. Gustavsson, A. Larsson, and P. A. Andrekson, “20 Gbit/sec error-free operation of 850 nm oxide-confined VCSELs beyond 1 km of multimode fibre,” Electron. Lett., vol. 48, no. 29, Sep., 2012.
[37] S. C. J. Lee, F. Breyer, S. Randel, D. Cárdenas, H. P. A. van den Boom, and A. M. J. Koonen, “Discrete multitone modulation for high-speed data transmission over multimode fibers using 850-nm VCSEL,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2011), paper OWM2.
[38] http://www.meridian-tech.com/downloads/Articles/Fiber%20Fundamentals%20(MM%20vs.%20SM).pdf

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 在光互連系統採用垂直共振腔面射型雷射並作非線性失真補償技術
2. 運用850光波段的垂直共振腔體面射型雷射搭載正交分頻多工調變於光互連系統
3. 利用新穎面射型雷射於高速長距離光互聯系統
4. 具成本效益之下世代被動光網路100Gb/s系統
5. 混和型拉曼/摻鉺光纖放大器之高速正交分頻 多工系統被動光網路系統應用雪崩式光電二極體與人工神經網路
6. 藉由正規化和剪裁方式降低非線性均衡器之複雜度技術並應用於850奈米垂直共振腔面射型雷射光連結系統
7. 室內LED光源應用正交分頻多工技術之高速可見光通訊
8. 四千億位元高速正交分頻分波多工之長距被動光網路
9. 混和型拉曼/摻鉺光纖放大器之高速正交分頻多工系統被動光網路系統
10. 應用LASSO和QR正交化分解來達成低複雜度的Volterra濾波器並應用在長距離被動式光纖系統中
11. 基於波長850奈米垂直共振腔面射型雷射之高速率距離乘積光連結系統應用非線性失真補償技術
12. 短距離光連結系統以波長850奈米垂直共振腔體面射型雷射為基礎應用非線性失真補償技術
13. 高速且長距離之正交分頻多工強度調變直接偵測系統中的非線性失真補償
14. 高速正交分頻多工長距離被動光網路系統透過降低OFDM過高峰均功率比技術
15. 正交分頻多工被動光網路系統分波多工達高速和高損耗預算