|
[1] P. Savolainen and K. Kulojarvi, “What implications will the transfer from desktop to mobile have on materials?,” Proc. Adv. Packaging Materials, vol. 14-17, pp. 214-217, March, 1999. [2] C. Labovitz et al., ATLAS Internet Observatory 2009 Annual Report; http://www.nanog.org/meetings/nanog47/presentations/Monday/Labovitz_ObserveReport_N47_Mon.pdf [3] C. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: What’s needed for datacenter network operations,” IEEE Commun. Mag., vol. 48, no. 7, pp. 32–39, Jul. 2010 [4] V. Vusirikala et al., Drivers and Applications of Optical Technologies for Internet Data Centre Networks, Proc. of OFC/NFOEC 2011, Los Angeles, CA, March 2011. [5] L. A. Barroso and U. Hölzle, The Datacenter as a Computer — An Introduction to the Design of Warehouse-Scale Machines, Morgan &; Claypool, 2009. http://www.morganclaypool.com/doi/pdf/10.2200/S00193ED1V01Y200905CAC006 [6] How Clean is Your Cloud? GreenDataProject, available online at: http://www.cloudtweaks.com/2012/04/greenpeace-report-how-clean-is-your-cloud/ [7] C. Kachris, AthensInfromation Technology (AIT), “ Optical interconnection networks for data centers” ONDM 2013 [8] IEEE P802.3ba Jul. (2009). [9] D. A. B. Miller and H. M. Özaktas, “Limit to the Bit-Rate Capacity of Electrical Interconnects from the Aspect Ratio of the System Architecture,” Journal of Parallel and Distributed Computing, no. 41, 1997. [10] D.A.B. Miller, "Physical Reasons for Optical Interconnection", Int. J. Optoelectronics 11, 155-168 (1997). [11] M. Jungo, Spatiotemporal vertical-cavity surface-emitting laser model for advanced simulations of optical links, 2003 :Swiss Federal Institute of Technology [12] J. A. Kash, “Internal optical interconnects in next generation high performance servers,” IEEE Avion. Fiber-Optics Photon., pp. 29–30, Sep. 2005. [13] http://opticalcomponents.blogspot.tw/2011/06/vcsel-advantage.html [14] Tony Irujo, Sales Engineer and John Kamino, Product Manager, “Multimode or Single-Mode Fiber?” http://www.ofsoptics.com/resources/MultimodeorSingle-Mode.pdf [15] L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, John Wiley &; Sons, New York (1995). [16] Dalal, Ravindra Vinod, “Investigation of high linearity DFB lasers for analog communications,” Massachusetts Institute of Technology, USA, 1998. [17] Jin-Wei Shi, Jhih-Cheng Yan, Jhih-Min Wun, Jason (Jyehong) Chen, and Ying-Jay Yang “Oxide-Relief and Zn-Diffusion 850 nm Vertical-Cavity Surface-Emitting Lasers with Extremely Low Energy-to-Data-Rate Ratios for 40 Gbit/sec Operations,” to be published in IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 2, March/April 2013. [18] J.-W. Shi, W.-C. Weng, F.-M. Kuo, Ying-Jay Yang, S. Pinches, M. Geen, A. Joel, “High-Performance Zn-Diffusion 850-nm Vertical-Cavity Surface-Emitting Lasers With Strained InAlGaAs Multiple Quantum Wells,” IEEE Photonics Journal, vol. 2, no. 6, pp. 960-966, Dec., 2010. [19] A. Larsson, P. Westbergh, J. Gustavsson, A. Haglund, B. Kogel, High-speed VCSELs for short reach communication,Semicond. Sci. Technol. 26, p. 014017, 2010. [20] P. Moser, W. Hofmann, P. Wolf, J. A. Lott, G. Larisch, A. Payusov, N. N. Ledentsov, and D. Bimberg, “81 fJ/bit energy-to-data ratio of 850-nm vertical-cavity surface-emitting lasers for optical interconnects,” Appl. Phys. Lett., vol. 98, no. 23, p. 231106, Jun. 2011. [21] P. Moser, P. Wolf, A. Mutig, G. Larisch, W. Unrau, W. Hofmann, and D. Bimberg, “85 ℃ error-free operation at 38 Gb/s of oxide-confined 980-nm vertical-cavity surface-emitting lasers,” Appl. Phys. Lett., vol. 100, no. 8, p. 081103, Feb., 2012. [22] S. Xie, R. Herrick, G. D. Brabander, W. Widjaja, U. Koelle, A.-N. Cheng, L. Giovane, F. Hu, M. Keever, T. Osentowski, [23] S. McHugo, M. Mayonte, S. Kim, D. Chamberlin, S. J. Rosner, and G. Girolami, BReliability and failure mechanisms of oxide VCSELs in non-hermetic environments,[ Proc. SPIE, vol. 4994, pp. 173–180, 2003. [24] J.-W. Shi, C.-C. Chen, Y.-S. Wu, S.-H. Guol, and Ying-Jay Yang, “The Influence of Zn-Diffusion Depth on the Static and Dynamic Behaviors of Zn-Diffusion High-Speed Vertical-Cavity Surface-Emitting Lasers at a 850nm Wavelength,” IEEE J. Quantum, Electron., vol. 45, pp. 800-806, July, 2009. [25] J.-W. Shi, C.-C. Chen, Y.-S. Wu, S.-H. Guol, and Ying-Jay Yang, “High-Power and High-Speed Zn-Diffusion Single Fundamental-Mode Vertical-Cavity Surface-Emitting Lasers at 850nm Wavelength,” IEEE Photon. Technol. Lett., vol. 20, pp.1121-1123, July, 2008. [26] Intuitive Guide to Principles of Communications: http://complextoreal.com/ [27] Edward A. Lee, David G. Messerschmitt, Digital Communication, Kluwer Academic Publishers, Boston, 1988. [28] R. W. Chang, 'Synthesis of Band-Limited Orthogonal Signals for. Multichannel Data Transmission,' Bell Syst. Tech. J., vol. 45, pp.1,775-1,796, Dec. 1966. [29] J. Armstrong, “OFDM for optical communications,” J. Lightwave Technol., vol. 27, no. 1, pp. 189-204, Feb. 2009. [30] Wei, J.L.; Ingham, J.D.; Cunningham, D.G.; Penty, R.V.; White, I.H. "Performance and Power Dissipation Comparisons Between 28 Gb/s NRZ, PAM, CAP and Optical OFDM Systems for Data Communication Applications", Lightwave Technology, Journal of, On page(s): 3273 - 3280 Volume: 30, Issue: 20, Oct.15, 2012. [31] A. V. Rylyakov, C. L. Schow, B. G. Lee, F. E. Doany, C. Baks, and J. A. Kash, “Transmitter Pre-Distortion for Simultaneous Improvements in Bit-Rate, Sensitivity, Jitter, and Power Efficiency in 20 Gb/s CMOS-driven VCSEL Links,” IEEE J. of Lightw. Technol., vol.30, no.4, pp.399-405, Feb. 2012. [32] P. Moser, J. A. Lott, P. Wolf, G. Larisch, A. S. Payusov, N. N. Ledentsov, W. Hofmann, and D. Bimberg, “99 fJ/(bit km) energy to data-distance ratio at 17 Gb/s across 1 km of multimode optical fiber with 850-nm singlemode VCSELs,” IEEE Photon. Technol. Lett., vol. 24, no. 1, pp. 19–21, Jan. 2012. [33] D. Molin and P. Sillard, "Low Bending Sensitivity of Regular OM3/OM4 Fibers in 10GbE Applications," Proc. Optical Fiber Communication Conference, JThA55 (2010). [34] P. Pepeljugoski, D. Kuchta, Y. Kwark, P. Pleunis, and G. Kuyt,“15.6-Gb/s transmission over 1 km of next generation multimodefiber,” IEEE Photon. Tech. Lett., vol. 14, no. 5, pp. 717–719, May 2002. [35] G. Giaretta, R. Michalzik, and A. J. Ritger, “Long distance (2.8 km), short wavelength (0.85 m) data transmission at 10 Gb/sec over new generation high bandwidth multimode fiber,” in Proc. Conf. Lasers Electro-Optics, San Francisco, CA, May 2000, pp. 678–679. [36] R. Safaisini, K. Szczerba, E. Haglund, P. Westbergh, J. S. Gustavsson, A. Larsson, and P. A. Andrekson, “20 Gbit/sec error-free operation of 850 nm oxide-confined VCSELs beyond 1 km of multimode fibre,” Electron. Lett., vol. 48, no. 29, Sep., 2012. [37] S. C. J. Lee, F. Breyer, S. Randel, D. Cárdenas, H. P. A. van den Boom, and A. M. J. Koonen, “Discrete multitone modulation for high-speed data transmission over multimode fibers using 850-nm VCSEL,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2011), paper OWM2. [38] http://www.meridian-tech.com/downloads/Articles/Fiber%20Fundamentals%20(MM%20vs.%20SM).pdf
|