(100.26.179.251) 您好!臺灣時間:2021/04/12 19:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:姜柏帆
研究生(外文):Po-fan Chiang
論文名稱:室內障礙物對建築物自然通風影響之研究
論文名稱(外文):Wind-Driven Cross Ventilation with Internal Obstacles
指導教授:朱佳仁朱佳仁引用關係
指導教授(外文):Chia-Ren Chu
學位類別:碩士
校院名稱:國立中央大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:95
中文關鍵詞:建築物通風風壓通風障礙物計算流體動力學室內阻抗係數建築物長度
外文關鍵詞:Wind-driven cross ventilationComputational Fluid DynamicsObstaclesBuilding lengthResistance factor
相關次數:
  • 被引用被引用:1
  • 點閱點閱:357
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:84
  • 收藏至我的研究室書目清單書目收藏:1
自然通風在建築物設計上是相當重要的課題之一,而室內的傢俱和障礙物的大小及擺設對於自然通風有著相當重要的影響。但現行許多建築物通風模式並沒有考慮到室內傢俱及障礙物對於建築物通風的影響,本研究採用計算流體動力學模式研究室內加裝障礙物對於室內外風壓及風場的影響,並利用阻抗模式計算阻抗係數及通風量。主要探討的參數包括室內障礙物的長、寬、高、位置及厚度。結果顯示室內障礙物的面積對於室外風壓的影響較小;當室內障礙物面積對於室內斷面積之比越大時,其室內阻抗係數越大,通風量越小;而在不同位置的研究中,當障礙物越靠近上游或是下游的開口時,會造成阻抗係數增大,通風效果變差;而當改變厚度時,其影響效果較不明顯。另外也對當室內有兩塊障礙物時,兩障礙物之間的距離進行研究。結果顯示出,當兩障礙物之間的距離越大時,其通風效果越好。
另一方面,也對建築物的縱深及開口的位置進行研究。結果發現,當建築物長度L/H > 2.5時,室內阻抗便不可忽略,當建築物長度不斷加長時,室內阻抗係數越大,自然通風效果越差。而當開口處於對角線的位置時,相較於開口處於建築物中央,會產生額外的室內阻抗,使通風效果變差。此阻抗模式可提供當建築設計者在設計室內擺設及大小或是開口位置時,計算通風量及阻抗係數之用。

Most ventilation models do not consider the influences of furniture and obstacles on building ventilation. This study developed a resistance model to calculate the ventilation rate of wind-driven cross ventilation in a low-rise building with vertical plates in the building. The flow resistances generated by the plates of various sizes were investigated using a Large Eddy Simulation model and wind tunnel experiments. The numerical and experimental results consistently demonstrated that the resistance factor is a function of the internal blockage ratio (ratio of the plate area to the internal cross-section area) and location, but is independent of the external wind speed, building size and opening configuration. It was also found that when the wall porosity is less 3%, the resistances caused by the external openings will dominate the ventilation process and the influence of the internal obstacles on the ventilation rate can be neglected. In addition, it was found that for building without internal obstacle, the resistance caused by the building internal wall should be taken into account when the building length L/H > 2.5. The ventilation rate decreased as the building length increased. Also, the location of external openings can also affect the ventilation process. When the openings on the windward and leeward façades are in the diagonal locations, the ventilation rate is smaller than that of the openings on the center of the façades.
Abstract I
Contents III
Notation IV
Table captions VI
Figure captions VII
1. Introduction 1
2. Numerical model 5
3. Model Verification 8
4. Experimental setup 12
5. Results and discussion 14
5.1 Case N: Reference case 15
5.2 Case A: Plate height 15
5.3 Case B: Plate width 16
5.4 Case C: Plate location 19
5.5 Case D: Plate thickness 20
5.6 Case E: Gap between plates 20
5.7 Case F: Building length 21
5.8 Case G: Diagonal openings 23
6. Conclusions 25
References 27

[1]R. Aynsley, Estimating summer wind driven natural ventilation potential for indoor thermal comfort, Journal of Wind Engineering and Industrial Aerodynamics 83 (1-3) (1999) 515-525.
[2]F. Allard, Natural ventilation in buildings: a design handbook, James and James Ltd., London, England; 1998.
[3]H.B. Awbi, Ventilation of Buildings. 2nd ed. Taylor and Francis; 2003.
[4]P.F. Linden, The fluid mechanics of natural ventilation, Annual Review of Fluid Mechanics 31 (1999) 201-238.
[5]D. Etheridge, M. Sandberg. Building ventilation: Theory and Measurement. John Wiley and Sons, Chichester, England, 1996.
[6]H.E. Feustel, COMIS - an international multizone air-flow and contaminant transport model, Energy and Buildings 30 (1999) 3-18.
[7]G.N. Walton, W.S. Dols, CONTAM 2.4 supplemental user guide and program documentation, NISTIR 7251, National Institute of Standards and Technology, USA, 2003.
[8]E. Dascalaki, M. Santamouris, M. Bruant, C.A. Balaras, A. Bossaer, D. Ducarme, P. Wouters, Modeling large openings with COMIS, Energy and Buildings 30 (1999) 105-115.
[9]P. Heiselberg, M. Sandberg, Evaluation of discharge coefficients for window openings in wind driven natural ventilation, International Journal of Ventilation 5(1) (2006) 43-52.
[10]G. Tan, L.R.Glicksman, Application of integrating multi-zone model with CFD simulation to natural ventilation prediction, Energy and Buildings 37 (2005) 1049-1057.
[11]C.R. Chu, Y.H. Chiu, Y.J. Chen, Y.W. Wang, C.P. Chou, Turbulence effects on the discharge coefficient and mean flow rate of wind-driven cross ventilation, Building and Environment 44 (2009) 2064-2072. doi:10.1016/j.buildenv.2009.02.012.
[12]M. Ohba, K. Irie, T. Kurabuchi, Study on airflow characteristics inside and outside a cross-ventilation model, and ventilation flow rates using wind tunnel experiments, Journal of Wind Engineering and Industrial Aerodynamics 89 (2001) 1513-1524.
[13]P. Karava, T. Stathopoulos, A.K. Athienitis, Airflow assessment in cross-ventilated buildings with operable façade elements, Building and Environment 46(1) (2011) 266-279.
[14]T. Kobayashi, K. Sagara, T. Yamanaka, H. Kotani, M. Sandberg, Power
transportation inside stream tube of cross-ventilated simple shaped model and pitched roof house. Building and Environment 44(7) (2009) 1440-1451.
[15]C.R. Chu, Y.H. Chiu, Y.W. Wang, An experiment study of wind-driven cross ventilation in partitioned buildings, Energy and Buildings 42 (2010) 667-673. doi:10.1016/j.enbuild.2009.11.004.
[16]R. Aynsley, A resistance approach to analysis of natural ventilation airflow networks, Journal of Wind Engineering and Industrial Aerodynamics; 67-68 (1997) 711-719.
[17]C.R. Chu, Y.W. Wang, The loss factors of building openings for wind-driven ventilation, Building and Environment 45(10) (2010) 2273-2279.
[18]G. Evola and V. Popov, Computational analysis of wind driven natural ventilation in buildings, Energy and Building 38 (2006) 491-501.
[19]Q. Chen, Ventilation performance prediction for buildings: A method overview and recent applications, Building and Environment 44 (2009) 848-858.
[20]R. Ramponi, and B. Blocken, CFD simulation of cross-ventilation for a generic isolated building: Impact of computational parameters, Building and Environment, 53 (2012) 34-48.
[21]M. Germano, U. Piomelli, P. Moin, W.H. Cabot, A dynamic subgrid scale eddy viscosity model. Physics of Fluids A 3(7) (1991) 1760-1765.
[22]J. Smagorinsky, General circulation experiments with the primitive equations. I. The basic experiment. Monthly Weather Review 91 (1963) 99-164.
[23]B.E. Launder, D.B. Spalding, The numerical computation of turbulent flows, Computer Methods in Applied Mechanics and Engineering 3 (1974) 269-289.
[24]B. Blocken, T. Stathopoulos, J. Carmeliet, CFD simulation of the atmospheric boundary layer: wall function problem, Atmospheric Environment 41 (2007) 238-252.
[25]Y. Tominaga, A. Mochida, R. Yoshie, H. Kataoka, T. Nozu, Y. Masaru, T. Shirasawa, AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings, Journal of Wind Engineering and Industrial Aerodynamics 96 (2008) 1749-1761.
[26]R.H. Chen, Experimental Study of Corridor Ventilation, Master Thesis for the Department of Civil Engineering, National Central University (2009).
[27]J.W. Chen, Influence of Wind Direction on the Wind-driven Natural Ventilation, Master Thesis for the Department of Civil Engineering, National Central University (2010).
[28]A.A. Townsend, The Structure of Turbulent Shear Flow, 2nd edition, Cambridge University (1976) 429.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔