跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/13 14:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李俋霆
研究生(外文):Yi-ting Li
論文名稱:動態緊急疏散指示系統之設計與評估
指導教授:朱致遠朱致遠引用關係
學位類別:碩士
校院名稱:國立中央大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:104
中文關鍵詞:疏散指示系統疏散指示細胞自動機模擬最佳化
外文關鍵詞:evacuation guidance systemevacuation signcellular automatasimulation optimization
相關次數:
  • 被引用被引用:1
  • 點閱點閱:430
  • 評分評分:
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:1
摘要
行人們很容易在各種緊急疏散中受到傷害,所以規劃行人們在室內建築物中
的疏散計畫是相當重要的。在緊急疏散這個動態的環境中,往往會有許多動態的災害因素以及行人造成的壅塞因素,這些因素都很可能造成人員之傷亡;當緊急災害來臨時,疏散指示之裝置是必要的逃生設備。本研究提出了一個方法,在複雜的平面圖中,透過每一個通道設置一個緊急疏散指示,所形成動態緊急疏散指示系統。此系統考慮了災害因素以及行人因素,行人們可藉由疏散指示之方向資訊在動態環境中迅速地逃生,亦可減少行人們因災害而受困以及壅塞狀況所造成之傷亡。因為這個問題相當複雜,以一般的方式解決是非常困難的。所以本研究將這個問題分成三個步驟去解決。第一個步驟,建立一套依疏散指示裝置產生的最短路徑生成樹。第二個步驟,以最短路徑生成樹為基礎建立一個靜態地面場供細胞自動機作行人模擬。第三個步驟,依照動態因素,建立一個可以迅速產生動態指示解的方法。依照動態因素產生指示解的原因主要有兩個原因。第一,依照動態因素而調整指示之方向,可以直接限制行人們遠離災害及危險。第二,以調整指示之方式限制指示之方向,可以大幅地降低運算之時間,達到緊急疏散之要求。最後,本研究以多出口以及多區域之平面圖為範例,作為本研究方法評估之成效。評估的結果顯示本研究所提出之方法相當有效,亦可用來幫助建築物中動態緊急疏散路線之規劃。

關鍵字:疏散指示系統、疏散指示、細胞自動機、模擬最佳化
ABSTRACT

Pedestrians are vulnerable in emergency evacuation situations, so evacuation planning is an important issue. Pedestrians are usually hurt due to disasters and congestion in the actual emergency evacuation. Therefore, an evacuation guidance that is adaptive to the real-time situation is necessary. This research proposes a method to create a dynamic emergency evacuation guidance system in buildings. The system considers the disaster factors and pedestrian factors to support the evacuation and to reduce the damage caused by disasters. The method consists of three steps for solving this problem. First, a shortest path tree is created according to evacuation signs. Second, based on the shortest path tree, a static floor field is created, which can be used in the Cellular Automata pedestrian simulation. And the last, a method for generating dynamic evacuation guidance considering disaster and congestion factors is developed. The proposed method has two benefits. First, adjusting the guidance by dynamic factors can help the pedestrians to avoid the disaster. Second, the computation time is short, which meets the requirement for emergency evacuation. In the case study, multiple exits and multi-area floor plan are used as an example to demonstrate the research method. The result of the research shows that the method is effective, and also has potential for the planning of dynamic emergency evacuation guidance.

Keywords: evacuation guidance system, evacuation sign, cellular automata,simulation optimization
目錄
摘要 .................................................................................................................................................. I
ABSTRACT .................................................................................................................................... II
誌謝 ............................................................................................................................................... III
目錄 ................................................................................................................................................IV
圖目錄 ............................................................................................................................................VI
表目錄 .........................................................................................................................................VIII
第一章、 緒論 ............................................................................................................................ 1
1.1 研究動機 ................................................................................................................................ 1
1.2 研究目的與內容...................................................................................................................... 2
第二章、 文獻回顧..................................................................................................................... 5
2.1 模擬最佳化 ............................................................................................................................. 5
2.1.1 連續的決策參數 ............................................................................................................... 6
2.1.2 不連續的決策參數 ........................................................................................................... 9
2.2 國外相關研究之回顧 ............................................................................................................ 11
2.2.1 此文獻之摘要及指引 ..................................................................................................... 11
2.2.2 考慮阻塞效應的出口模型 .............................................................................................. 12
2.2.3 求解方法 ........................................................................................................................ 16
2.2.4 測試和模擬結果 ............................................................................................................ 19
2.3 相關研究之回顧 .................................................................................................................... 20
2.3.1 此文獻之摘要及指引 ..................................................................................................... 21
2.3.2 理想的緊急疏散指示系統 ............................................................................................. 22
v
2.3.3 產生實際的緊急疏散指示系統 ...................................................................................... 27
2.3.4 評估與結論 ..................................................................................................................... 29
2.4 細胞自動機(Cellular Automata ,CA) ..................................................................................... 31
2.4.1 細胞自動機的模式建立 ................................................................................................ 32
2.4.2 行人狀況 ........................................................................................................................ 34
第三章、 研究方法................................................................................................................... 37
3.1 動態指示演算法 .................................................................................................................... 37
3.2 演算法-依疏散指示產生最短路徑生成樹 ............................................................................ 51
3.3 靜態地面場的產生方法 ........................................................................................................ 67
第四章、 實例評估................................................................................................................... 72
4.1 評估動態疏散指示之計畫..................................................................................................... 72
4.2 評估方式 ............................................................................................................................... 74
4.3 評估結果及分析 .................................................................................................................... 85
第五章、 結論與建議 ............................................................................................................... 90
5.1 結論...................................................................................................................................... 90
5.2 未來研究與方向.................................................................................................................... 91
參考文獻 ........................................................................................................................................ 92
參考文獻
Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993). “Network Flow:
Theory, Algorithms and applications.” Prentice-Hall, Inc.
Burstedde, C., Klauck, K., Schadschneider, A., and Zittartz, J., (2001),
“Simulation of pedestrian dynamics using two-dimensional
cellular automation.” Physica A, 295, 507-525.
Gilber, P. H., Isenberg, J., Baecher, G. B., Papay, L. T., Speilvogel, L. G.,
Woodard, J. B., and Badolato, E. (2003). “Infrastructure issues for
cities-counting terrorist threat.” Journal of Infrastructure Systems, 9,
44.
Helbing, D., Farkas, I., and Vicsek, T., (2000). “Simulating Dynamical
Features of Escape Panic.” Nature, 407, 487-490.
Johansson, A., Helbing, D., and Shukla, P. S., (2007).“Specification of the
social force pedestrian model by evolutionary adjustment to video
tracking data.” Adv. Complex Syst, 10, 271-288.
Kirchner, A., Nishinari, K., and Schadschneider A., (2003). “Friction
effects and clogging in a cellular automation model for pedestrian
dynamics.” Physical Review, 67, 1-10.
93
Luh, B., Christian, T., Wilkie, S. C., Chang, S. C., (2012). “Modeling and
Optimization of Building Emergency Evacuation Considering
Blocking Effects on Crowd Movement.” IEEE Conference on
Automation Science and Engineering, 5, 1-12.
Ozel, F., (2001) “Time Pressure and Stress as a Factor During Emergency
Egress.” Safety Science, 38, 95-107.
Proulx, G., (1993). “A Stress Model for People Facing a Fire.” Journal of
Environmental Psychology, 13(2), 137-147.
Pu, S., and Zlatanova, S., (2005). “Evacuation route calculation of inner
buildings.” Geo-information for disaster management, 1143-1161.
Schadschneider, A., Klupdel, H., Kretz, T., Rogsch, C. & Seyfried, A.,
(2008). “Evacuation dynamics: empirical results, modeling and
applications.” Encyclopedia of Complexity and System Science.
Springer-Verlag, Berlin, Germany.
Spall, J. C., (2003). “ Introduction to Stochastic Search and
Optimization:Estimation, Simulation, and Control.” John Wiley &
Sons, Inc.
葉朝元(2011) 「緊急疏散指示系統之設計與評估」,國立中央大學土
木工程學系碩士論文
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top