|
1. Lin, H.F. and T. Schagat, Neuroblasts: A model for the asymmetric division of stem cells. Trends in Genetics, 1997. 13(1): p. 33-39. 2. Verfaillie, C.M., M.F. Pera, and P.M. Lansdorp, Stem cells: hype and reality. Hematology Am Soc Hematol Educ Program, 2002: p. 369-91. 3. Guo, W., J.L. Lasky, and H. Wu, Cancer stem cells. Pediatric Research, 2006. 59(4): p. 59r-64r. 4. Dewey, M.J., et al., Mosaic mice with teratocarcinoma-derived mutant cells deficient in hypoxanthine phosphoribosyltransferase. Proc Natl Acad Sci U S A, 1977. 74(12): p. 5564-8. 5. Evans, M.J. and M.H. Kaufman, Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981. 292(5819): p. 154-6. 6. Martin, G.R., Teratocarcinomas as a model system for the study of embryogenesis and neoplasia. Cell, 1975. 5: p. 229-43. 7. Spangrude, G.J., S. Heimfeld, and I.L. Weissman, Purification and characterization of mouse hematopoietic stem cells. Science, 1988. 241(4861): p. 58-62. 8. Morrison, S.J. and I.L. Weissman, The Long-Term Repopulating Subset of Hematopoietic Stem-Cells Is Deterministic and Isolatable by Phenotype. Immunity, 1994. 1(8): p. 661-673. 9. Baum, C.M., et al., Isolation of a Candidate Human Hematopoietic Stem-Cell Population. Proceedings of the National Academy of Sciences of the United States of America, 1992. 89(7): p. 2804-2808. 10. Osawa, M., et al., Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science, 1996. 273(5272): p. 242-245. 11. Reya, T., et al., Stem cells, cancer, and cancer stem cells. Nature, 2001. 414(6859): p. 105-111. 12. Smith, C., Hematopoietic Stem Cells and Hematopoiesis. Cancer Control, 2003. 10: p. 9-16. 13. Clarke, M.F. and M. Fuller, Stem cells and cancer: Two faces of eve. Cell, 2006. 124(6): p. 1111-1115. 14. Dalerba, P., R.W. Cho, and M.F. Clarke, Cancer stem cells: Models and concepts. Annual Review of Medicine, 2007. 58: p. 267-284. 15. Pardal, R., M.F. Clarke, and S.J. Morrison, Applying the principles of stem-cell biology to cancer. Nature Reviews Cancer, 2003. 3(12): p. 895-902. 16. Trumpp, A. and O.D. Wiestler, Mechanisms of Disease: cancer stem cells--targeting the evil twin. Nat Clin Pract Oncol, 2008. 5(6): p. 337-47. 17. Bonnet, D. and J.E. Dick, Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med, 1997. 3(7): p. 730-7. 18. Spira, A. and D.S. Ettinger, Multidisciplinary management of lung cancer. N Engl J Med, 2004. 350(4): p. 379-92. 19. Hsu, H.S., et al., Promoter hypermethylation is the predominant mechanism in hMLH1 and hMSH2 deregulation and is a poor prognostic factor in nonsmoking lung cancer. Clin Cancer Res, 2005. 11(15): p. 5410-6. 20. Chen, Y.C., et al., Oct-4 Expression Maintained Cancer Stem-Like Properties in Lung Cancer-Derived CD133-Positive Cells. Plos One, 2008. 3(7). 21. Socinski, M.A. and J.A. Bogart, Limited-stage small-cell lung cancer: The current status of combined-modality therapy. Journal of Clinical Oncology, 2007. 25(26): p. 4137-4145. 22. Bernstein, E.D., S.M. Herbert, and N.H. Hanna, Chemotherapy and radiotherapy in the treatment of resectable non-small-cell lung cancer. Annals of Surgical Oncology, 2006. 13(3): p. 291-301. 23. Lam, W.K. and D.N. Watkins, Lung cancer: Future directions. Respirology, 2007. 12(4): p. 471-477. 24. Ricci-Vitiani, L., et al., Identification and expansion of human colon-cancer-initiating cells. Nature, 2007. 445(7123): p. 111-115. 25. Jemal, A., et al., Cancer statistics, 2006. Ca-a Cancer Journal for Clinicians, 2006. 56(2): p. 106-130. 26. Al-Hajj, M., et al., Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2003. 100(7): p. 3983-3988. 27. Goodell, M.A., et al., Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. Journal of Experimental Medicine, 1996. 183(4): p. 1797-1806. 28. Chiasson, B.J., et al., Adult mammalian forebrain ependymal and subependymal cells demonstrate proliferative potential, but only subependymal cells have neural stem cell characteristics. Journal of Neuroscience, 1999. 19(11): p. 4462-4471. 29. Seaberg, R.M. and D. van der Kooy, Stem and progenitor cells: the premature desertion of rigorous definitions. Trends in Neurosciences, 2003. 26(3): p. 125-131. 30. Todaro, M., et al., Colon Cancer Stem Cells: Promise of Targeted Therapy. Gastroenterology, 2010. 138(6): p. 2151-2162. 31. Klonisch, T., et al., Cancer stem cell markers in common cancers - therapeutic implications. Trends in Molecular Medicine, 2008. 14(10): p. 450-460. 32. Vermeulen, L., et al., Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proceedings of the National Academy of Sciences of the United States of America, 2008. 105(36): p. 13427-13432. 33. Ricci-Vitiani, L., et al., Colon cancer stem cells. Journal of Molecular Medicine-Jmm, 2009. 87(11): p. 1097-1104. 34. Papailiou, J., et al., Stem cells in colon cancer. A new era in cancer theory begins. International Journal of Colorectal Disease, 2011. 26(1): p. 1-11. 35. Yin, A.H., et al., AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood, 1997. 90(12): p. 5002-5012. 36. O'Brien, C.A., et al., A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 2007. 445(7123): p. 106-110. 37. Singh, S.K., et al., Identification of human brain tumour initiating cells. Nature, 2004. 432(7015): p. 396-401. 38. Hilbe, W., et al., CD133 positive endothelial progenitor cells contribute to the tumour vasculature in non-small cell lung cancer. Journal of Clinical Pathology, 2004. 57(9): p. 965-969. 39. Eramo, A., et al., Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death and Differentiation, 2008. 15(3): p. 504-514. 40. Haegebarth, A. and H. Clevers, Wnt Signaling, Lgr5, and Stem Cells in the Intestine and Skin. American Journal of Pathology, 2009. 174(3): p. 715-721. 41. Barker, N., et al., Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature, 2007. 449(7165): p. 1003-U1. 42. Sato, T., et al., Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature, 2009. 459(7244): p. 262-U147. 43. Barker, N., et al., Crypt stem cells as the cells-of-origin of intestinal cancer. Nature, 2009. 457(7229): p. 608-U119. 44. Kaneko, Y., et al., Musashi1: An evolutionally conserved marker for CNS progenitor cells including neural stem cells. Developmental Neuroscience, 2000. 22(1-2): p. 139-153. 45. Booth, C. and C.S. Potten, Gut instincts: thoughts on intestinal epithelial stem cells. Journal of Clinical Investigation, 2000. 105(11): p. 1493-1499. 46. Nishimura, S., et al., Expression of Musashi-1 in human normal colon crypt cells - A possible stem cell marker of human colon epithelium. Digestive Diseases and Sciences, 2003. 48(8): p. 1523-1529. 47. Huang, E.H., et al., Aldehyde Dehydrogenase 1 Is a Marker for Normal and Malignant Human Colonic Stem Cells (SC) and Tracks SC Overpopulation during Colon Tumorigenesis. Cancer Research, 2009. 69(8): p. 3382-3389. 48. Bhardwaj, G., et al., Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nature Immunology, 2001. 2(2): p. 172-180. 49. Costello, R.T., et al., Human acute myeloid leukemia CD34(+)/CD38(-) progenitor cells have decreased sensitivity to chemotherapy and fas-induced apoptosis, reduced immunogenicity, and impaired dendritic cell transformation capacities. Cancer Research, 2000. 60(16): p. 4403-4411. 50. Ouhtit, A., et al., In vivo evidence for the role of CD44s in promoting breast cancer metastasis to the liver. American Journal of Pathology, 2007. 171(6): p. 2033-2039. 51. Singh, S.K., et al., Identification of a cancer stem cell in human brain tumors. Cancer Research, 2003. 63(18): p. 5821-5828. 52. Richardson, G.D., et al., CD133, a novel marker for human prostatic epithelial stem cells. Journal of Cell Science, 2004. 117(16): p. 3539-3545. 53. Collins, A.T., et al., Prospective identification of tumorigenic prostate cancer stem cells. Cancer Research, 2005. 65(23): p. 10946-10951. 54. Xin, L., D.A. Lawson, and O.N. Witte, The Sca-1 cell surface marker enriches for a prostateregenerating cell subpopulation that can initiate prostate tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(19): p. 6942-6947. 55. Lawson, D.A., et al., Prostate stem cells and prostate cancer. Cold Spring Harb Symp Quant Biol, 2005. 70: p. 187-96. 56. Dalerba, P., et al., Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A, 2007. 104(24): p. 10158-63. 57. Du, L., et al., CD44 is of functional importance for colorectal cancer stem cells. Clin Cancer Res, 2008. 14(21): p. 6751-60. 58. Bao, S.D., et al., Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Research, 2006. 66(16): p. 7843-7848. 59. Bruno, S., et al., CD133(+) renal progenitor cells contribute to tumor angiogenesis. American Journal of Pathology, 2006. 169(6): p. 2223-2235. 60. Zhu, L.Q., et al., Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature, 2009. 457(7229): p. 603-U114. 61. Yoshikawa, R., et al., Hedgehog signal activation in oesophageal cancer patients undergoing neoadjuvant chemoradiotherapy. British Journal of Cancer, 2008. 98(10): p. 1670-1674. 62. Takahashi, H., et al., Significance of Lgr5(+ve) cancer stem cells in the colon and rectum. Ann Surg Oncol, 2011. 18(4): p. 1166-74. 63. Li, C., et al., Identification of pancreatic cancer stem cells. Cancer Res, 2007. 67(3): p. 1030-7. 64. Lee, C.J., J. Dosch, and D.M. Simeone, Pancreatic cancer stem cells. Journal of Clinical Oncology, 2008. 26(17): p. 2806-2812. 65. Hurt, E.M., et al., CD44(+)CD24(-) prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. British Journal of Cancer, 2008. 98(4): p. 756-765. 66. Joyce, J.A. and J.W. Pollard, Microenvironmental regulation of metastasis. Nature Reviews Cancer, 2009. 9(4): p. 239-252. 67. Hurt, E.M., et al., Identification of Vitronectin as an Extrinsic Inducer of Cancer Stem Cell Differentiation and Tumor Formation. Stem Cells, 2010. 28(3): p. 390-398. 68. Armstrong, T., et al., Type I collagen promotes the malignant phenotype of pancreatic ductal adenocarcinoma. Clinical Cancer Research, 2004. 10(21): p. 7427-7437. 69. Wall, S.J., et al., Meeting report: Proteases, extracellular matrix, and cancer: an AACR Special Conference in Cancer Research. Cancer Res, 2003. 63(15): p. 4750-5. 70. Dasgupta, S., S. Srinidhi, and J.K. Vishwanatha, Oncogenic activation in prostate cancer progression and metastasis: Molecular insights and future challenges. J Carcinog, 2012. 11: p. 4. 71. Dityatev, A. and M. Schachner, Extracellular matrix molecules and synaptic plasticity. Nat Rev Neurosci, 2003. 4(6): p. 456-68. 72. Giancotti, F.G. and E. Ruoslahti, Integrin signaling. Science, 1999. 285(5430): p. 1028-32. 73. Hood, J.D. and D.A. Cheresh, Role of integrins in cell invasion and migration. Nat Rev Cancer, 2002. 2(2): p. 91-100. 74. Lee, J.W. and R. Juliano, Mitogenic signal transduction by integrin- and growth factor receptor-mediated pathways. Molecules and Cells, 2004. 17(2): p. 188-202. 75. Sethi, T., et al., Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: A mechanism for small cell lung cancer growth and drug resistance in vivo. Nature Medicine, 1999. 5(6): p. 662-668. 76. Damiano, J.S., et al., Cell adhesion mediated drug resistance (CAM-DR): Role of integrins and resistance to apoptosis in human myeloma cell lines. Blood, 1999. 93(5): p. 1658-1667. 77. Uhm, J.H., et al., Vitronectin, a glioma-derived extracellular matrix protein, protects tumor cells from apoptotic death. Clinical Cancer Research, 1999. 5(6): p. 1587-1594. 78. Jinka, R., et al., Alterations in Cell-Extracellular Matrix Interactions during Progression of Cancers. International Journal of Cell Biology, 2012. 2012: p. 219196. 79. Aoudjit, F. and K. Vuori, Integrin signaling in cancer cell survival and chemoresistance. Chemother Res Pract, 2012. 2012: p. 283181. 80. Kim, S., et al., The effect of fibronectin-coated implant on canine osseointegration. J Periodontal Implant Sci, 2011. 41: p. 242-247. 81. Weiss, R.E. and A.H. Reddi, Synthesis and localization of fibronectin during collagenous matrix-mesenchymal cell interaction and differentiation of cartilage and bone in vivo. Proc Natl Acad Sci U S A, 1980. 77(4): p. 2074-8. 82. Norton, P.A. and R.O. Hynes, In vitro splicing of fibronectin pre-mRNAs. Nucleic Acids Res, 1990. 18(14): p. 4089-97. 83. Han, S., F.R. Khuri, and J. Roman, Fibronectin stimulates non-small cell lung carcinoma cell growth through activation of Akt/mammalian target of rapamycin/S6 kinase and inactivation of LKB1/AMP-activated protein kinase signal pathways. Cancer Res, 2006. 66(1): p. 315-23. 84. http://en.wikipedia.org/wiki. 85. Preissner, K.T. and D. Seiffert, Role of vitronectin and its receptors in haemostasis and vascular remodeling. Thrombosis Research, 1998. 89(1): p. 1-21. 86. Habermann, B.F. and D.A. Cheresh, Vitronectin and its receptors. Current Opinion in Cell Biology, 1993. 5(5): p. 864-868. 87. Di Lullo, G.A., et al., Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. Journal of Biological Chemistry, 2002. 277(6): p. 4223-4231. 88. Mollenhauer, J., I. Roether, and H.F. Kern, Distribution of extracellular matrix proteins in pancreatic ductal adenocarcinoma and its influence on tumor cell proliferation in vitro. Pancreas, 1987. 2(1): p. 14-24. 89. http://themedicalbiochemistrypage.org/extracellularmatrix.html. 90. Talbot, D., et al., Flow Cytometric Cross-Matching and Outcome One Year after Renal-Transplantation. Transplant International, 1992. 5: p. S604-S605. 91. http://www.semrock.com/flow-cytometry.aspx. 92. Butler, J.E., et al., The enzyme-linked immunosorbent assay (ELISA): a measure of antibody concentration or affinity. Immunochemistry, 1978. 15(2): p. 131-6. 93. Carlsson, H.E., B. Hurvell, and A.A. Lindberg, Enzyme-linked immunosorbent assay (ELISA) for titration of antibodies against Brucella abortus and Yersinia enterocolitica. Acta Pathol Microbiol Scand C, 1976. 84(3): p. 168-76. 94. Engvall, E., K. Jonsson, and P. Perlmann, Enzyme-linked immunosorbent assay. II. Quantitative assay of protein antigen, immunoglobulin G, by means of enzyme-labelled antigen and antibody-coated tubes. Biochim Biophys Acta, 1971. 251(3): p. 427-34. 95. Engvall, E. and P. Perlmann, Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry, 1971. 8(9): p. 871-4. 96. Keren, D.F., Enzyme-linked immunosorbent assay for immunoglobulin G and immunoglobulin A antibodies to Shigella flexneri antigens. Infect Immun, 1979. 24(2): p. 441-8. 97. Konstadoulakis, M.M., et al., The Presence of Anticarcinoembryonic Antigen (Cea) Antibodies in the Sera of Patients with Gastrointestinal Malignancies. Journal of Clinical Immunology, 1994. 14(5): p. 310-313. 98. Mekler, V.M. and S.M. Bystryak, Application of Ortho-Phenylenediamine as a Fluorogenic Substrate in Peroxidase-Mediated Enzyme-Linked-Immunosorbent-Assay. Analytica Chimica Acta, 1992. 264(2): p. 359-363. 99. Higuchi, A., et al., Enhanced CEA production associated with aspirin in a culture of CW-2 cells on some polymeric films. Cytotechnology, 1999. 31(3): p. 233-242. 100. http://www.signosisinc.com/principle/Tumor_Marker_ELISA_Kits. 101. Coons, A.H., et al., The Demonstration of Pneumococcal Antigen in Tissues by the Use of Fluorescent Antibody. The Journal of Immunology, 1942. 45: p. 159-170. 102. von dem Borne, A.E., et al., A simple immunofluorescence test for the detection of platelet antibodies. Br J Haematol, 1978. 39(2): p. 195-207. 103. N., S.R.P., http://www.microrao.com. 104. http://www.mgormerod.com/page123.html. 105. Welte, Y., et al., Cancer stem cells in solid tumors: elusive or illusive? Cell Communication and Signaling, 2010. 8. 106. Ieta, K., et al., Biological and genetic characteristics of tumor-initiating cells in colon cancer. Annals of Surgical Oncology, 2008. 15(2): p. 638-648. 107. Shmelkov, S.V., et al., CD133 expression is not restricted to stem cells, and both CD133(+) and CD133(-) metastatic colon cancer cells initiate tumors. Journal of Clinical Investigation, 2008. 118(6): p. 2111-2120. 108. Dittfeld, C., et al., CD133 expression is not selective for tumor-initiating or radioresistant cell populations in the CRC cell line HCT-116. Radiotherapy and Oncology, 2010. 94(3): p. 375-383. 109. Yang, Z.F., et al., Identification of local and circulating cancer stem cells in human liver cancer. Hepatology, 2008. 47(3): p. 919-928. 110. Lee, H.H.-c., et al., Drug-resistant colon cancer cells produce high carcinoembryonic antigen and might not be cancer-initiating cells. Drug Design, Development and Therapy, 2013. 111. Yu, W.-c., purification, depletion, and characterization of cancer stem cells in colon cancer cells and tissues cultured under several conditions. 2011.
|