(3.227.208.0) 您好!臺灣時間:2021/04/21 01:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:葉喬淳
研究生(外文):Chiao-chun Yeh
論文名稱:以短鏈胜肽接枝聚乙烯亞胺來進行基因輸送應用之研究
論文名稱(外文):The use of short peptides conjugated PEI for gene delivery application
指導教授:胡威文
指導教授(外文):Wei-wen Hu
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學工程與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:123
中文關鍵詞:聚乙烯亞胺胜肽基因傳送
外文關鍵詞:polyethyleniminepeptidesgene deliverybioconjugationendosomal escapeindolicidin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:177
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究將短鏈胜肽接枝於聚乙烯亞胺當作基因載體,並以正負電荷吸引方式,將此載體與質體DNA以不同胺基/磷酸根莫耳比(N/P ratio)組裝成奈米粒子。我們可以藉由動態雷射散射粒徑分析儀測得粒子粒徑大小約分佈在200nm-600nm間;大部份表面電位則為正電,皆為可接受之基因傳送條件。此外,改質過後的PEI,依然能提供質體DNA良好的包覆率。而由MTT分析顯示,改質過後的PEI毒性比未改質前毒性較少,甚至沒有毒性。PEI接枝R9、SAP10兩組載體幾乎沒有轉染效率,IL接枝組不僅有轉染還且優於純PEI組別。我們利用螢光標定以追蹤質體DNA,發現改質過的PEI只有IL接枝組能有效將DNA送入到細胞中。利用Bafilomycin A1 及Chloroquine藥物來探討PEI-IL轉染機制,可發現以PEI-IL所送入的DNA,其內胞逃脫非完全藉由質子海綿效應。最後我們以分子動態模擬來探討這些接枝的胜肽與脂雙層間之交互作用,發現胜肽的疏水端須能進入脂雙層方可穩定其與細胞膜的作用力,進而促進粒子的被吞噬,其中IL的tryptophan 扮演疏水端進入脂雙層的關鍵角色。
In this study, short peptides were conjugated with polyethyleneimine for the application of gene delivery. By electrostatic interaction, self- assembled nanoparticles using PEI-CPPs, and plasmid DNA were prepared in different amine/phosphate (N/P) ratios. The dynamic laser scattering experiment demonstrated that most of particles formed by peptide modified PEI were between the 200 to 600 nm with positive surfaces, suggesting that these nanoparticles were appropriate for gene transfer. In addition, the modified PEI effectively bound DNA. The MTT assays suggested that modification PEI reduced the cytotoxicity. PEI conjugated either by R9 or SAP10 were unable to transfect cells. In contrast, IL conjugated PEI demonstrated better transfection efficiency than that using sole PEI. We used fluorescein labeling to track plasma DNA delivery. Only PEI-IL can carry DNA to cells. To determine the endosomal escape mechanism of PEI-IL, bafilomycin A1 & chloroquine were applied during transfection. Their results suggested that internalized DNA should be released mainly by proton sponge effect; however, the grafted IL may also perturb endosome membrane and eventually causes membrane disruption. Finally, we used molecular dynamic simulation to elucidate the mechanism of grafted CPP interact with lipid bilyaer. The results indicated that only peptides with hydrophobic domain entering lipid bilayer can stabilize their interactions to cell membrane. In addition, tryptophan in indolicidin plays an important role to the insertion of IL to lipid bilayer.
摘要 I
Abstract II
致謝 III
目錄 V
圖目錄 IX
表目錄 XII
縮寫表 XIII
第壹章 序論 1
1-1 背景 1
1-2 實驗目的 4
第貳章 文獻回顧 5
2-1 基因傳送療法 5
2-2 基因載體 10
2-3 正電高分子 13
2-3-1聚乙烯亞胺(Polyethyleneimine,PEI) 15
2-4 胜肽 20
2-4-1穿膜胜肽 21
2-4-2鹼性抗生胜肽 25
2-4-2以胜肽進行基因輸送 28
第參章 實驗材料與方法 31
3-1 試藥與原料 31
3-1-1質體DNA 31
3-1-2細胞 32
3-1-3穿膜胜肽(Cell-penetrating peptides) 32
3-1-4藥品 33
3-2 儀器 34
3-3 試藥配製 36
3-4 質體DNA純化 37
3-5 NIH-3T3細胞培養 38
3-6 PEI結合不同種類CPP對轉染效率影響 41
3-6-1細胞轉染 41
3-6-2 ONPG分析 43
3-6-3 X-Gal for β-Galactosidase 45
3-6-4 MTT分析 46
3-7 轉染機制探討 47
3-7-1細胞吸收(uptake)效率(以Fluorescein標記DNA) 47
3-7-2 Bafilomycin A1作用 50
3-7-3 Chloroquine作用 50
3-8 奈米粒子製備及物理化學性質鑑定 51
3-8-1奈米粒子製備 51
3-8-2雷射粒徑分佈儀(dynamic light scattering, DLS)分析 51
3-8-3掃描式電子顯微鏡(scanning electron microscope, SEM) 52
3-8-4包覆率分析 53
3-8-5接枝率分析 55
第肆章 結果與討論 57
4-1 PEI結合胜肽對對轉染效率影響 57
4-2 PEI接枝短鏈胜肽分析 60
4-3 奈米粒子物性鑑定 66
4-3-1表面電位(DLS測定) 66
4-3-2粒徑大小 69
4-3-3包覆率分析 72
4-4 PEI接枝胜肽對對轉染效率影響 76
4-5 X-gal染色 79
4-6 MTT測試對細胞活性分析 80
4-7 轉染機制探討 83
4-7-1細胞吸收效率 83
4-7-2內胞脫離作用(endosomal escape)之抑制劑影響 85
4-8 分子模擬 91
4-8-1分子模擬介紹 91
4-8-2分子模擬結果 94
第伍章 結論 100
第陸章 參考文獻 102


1. 張家健, 醣類修飾對聚乙烯亞胺酸鹼緩衝能力的影響, 2007, 台灣科技大學.
2. AM S., M V., and S Y.-H., Adenoviruses as Gene Delivery Vectors. Cancer Gene Therapy, 2002. 465: p. 423-429.
3. U M., J B., M S., C v.K., S K., A S., and C B., Cell-culture assays reveal the importance of retroviral vector design for insertional genotoxicity. Blood, 2006(108(8)): p. 2545-53.
4. R G., R P., J H., J L., J T., and P. C., Vectors and delivery systems in gene therapy. Medical Science Monitor, 2005 11(4): p. RA110-21.
5. F L. and L H., Development of non-viral vectors for systemic gene delivery. Journal of Controlled Release, 2002. 78(1-3): p. 259-66.
6. O B., F L.h., MA Z., MD M., D S., B D., and JP B., A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proceedings of the National Academy of Sciences of the United States of America, 1995 92(16): p. 7297-301.
7. B A., L S., and BA D., Non-viral gene transfer: applications in developmental biology and gene therapy. Biology of the Cell, 1995(85(1)): p. 1-7.
8. Zhao QQ C.J., Lv TF, He CX, Tang GP, Liang WQ, Tabata Y, Gao JQ., N/P ratio significantly influences the transfection efficiency and cytotoxicity of a polyethylenimine/chitosan/DNA complex. Biol Pharm Bull., 2009 Apr(32(4)): p. 706-10.
9. A C., F E., and YS S., Cell-penetrating peptides: Nanocarrier for macromolecule delivery in living cells. International Union of Biochemistry and Molecular Biology Life, 2010 (62(3)): p. 183-93.
10. S V., SD L., A T., and T R., Cellular delivery of small interfering RNA by a non-covalently attached cell-penetrating peptide:quantitative analysis of uptake and biological effect. . Nucleic Acids Research, 2006(34(22)): p. 6561–6573.
11. A B., Potential efficacy of cell-penetrating peptides for nucleic acid and drug delivery in cancer. Biochimica et Biophysica Acta 2011 (1816(2)): p. 232-46.
12. M M. and U L., Cell-penetrating peptides as vectors for peptide, protein and oligonucleotide delivery. Current Opinion in Pharmacology, October 6(5): p. 509-514.
13. A B., SX X., A F., and C B., "Soft" calcium crosslinks enable highly efficient gene transfection using TAT peptide. Pharmaceutical Research, 2009 (26(12)): p. 2619-29.
14. A B., SX X., A F., and C B., Calcium condensation of DNA complexed with cell-penetrating peptides offers efficient, noncytotoxic gene delivery. Journal of Pharmaceutical Sciences, 2011(100(5)): p. 1637-42.
15. EJ K., S L., and SH P., A truncated HGP peptide sequence retains endosomolytic activity and improves gene delivery efficiencies. Molecular Pharmacology, 2010
7(4): p. 1260-1265.
16. 林則緯, 利用穿膜胜肽改善帶正電高分子之轉染效率, 2012, 國立中央大學.
17. K K., S E.-A., P J., A M., A V., T B., P K., M M., and U L., Evaluation of transportan 10 in PEI maediated plasmid delivery assay. Journal of Controlled Release, 2005 (103(2)): p. 511-23.
18. D D., M I., AS L., MC L., X Z., Y W., D N., PE D.A., L H., J R., and JC W., Efficient gene delivery of primary human cells using peptide linked polyethylenimine polymer hybrid. Biomaterials, 2011 32(20): p. 4647-58.
19. 廖祥裕, 幾丁聚醣做為不同細胞株DNA輸送載體之評估, 2005, 國立成功大學.
20. M C., G S., R A., S B., and P K., Molecular therapy in ocular wound healing. British Journal of Ophthalmology, 1999 (83(11)): p. 1219–1224.
21. 王朝暉, 新型聚噁唑啉/聚乳酸團聯共聚物在藥物及基因傳輸上的應用, 2004, 國立清華大學.
22. G d.S., R G., MJ R.-E., M E., and R D.-O., Replication and control of circular bacterial plasmids. Microbiology and Molecular Biology Reviews, 1998 (62(2)): p. 434-64.
23. RT F., Biological approaches to bone regeneration by gene therapy. Journal of Dental Research, 2005(84(12)): p. 1093-103.
24. RH J. BCbasics. 2007.
25. PH K., K G., RT F., and RB R., Gene therapy-directed osteogenesis: BMP-7-transduced human fibroblasts form bone in vivo. Human Gene Therapy, 2000 (11(8)): p. 1201-10.
26. E T. and AP R., Controllable gene therapy pharmaceutics of non-viral gene delivery systems. Journal of Controlled Release, 1996. 39(2-3): p. 357-372.
27. 陳惠美, 陽離子型高分子微胞之合成與性質之研究, 2004.
28. WC T., FR H., and TD G., Transfection by cationic liposomes using simultaneous single cell measurements of plasmid delivery and transgene expression. Journal of Biological Chemistry, 1997(272(41)): p. 25641-7.
29. CM V., K H., and DA L., Quantitative analysis of synthetic gene delivery vector design properties. Molecular Therapy, 2001(4(5)): p. 438-46.
30. RG C., Transfer of genes to humans: early lessons and obstacles to success. Science, 1995(270(5235)): p. 404-10.
31. 牛惠之, 論基因治療之科技風險與醫療傷害之救濟– 必也新法乎??, 清華大學.
32. S M., P L., K C., M B., E B., and JC F., Chitosan-DNA nanoparticles as non-viral vectors in gene therapy: strategies to improve transfection efficacy. European Journal of Pharmaceutics and Biopharmaceutics, 2004(57(1)): p. 1-8.
33. WC T. and CM J., Improved stability of polycationic vector by dextran-grafted branched polyethylenimine. Biomacromolecules, 2003 (4(5)): p. 1277-84.
34. D F., Gene therapy. Safer and virus-free? Science, 2001 (294(5547)): p. 1638-42.
35. SC D.S., J D., and WE H., Cationic polymer based gene delivery systems. Pharmaceutical Research, 2000 (17(2)): p. 113-26.
36. 全東琴蘇德森. 脂質體前體制劑研究進展. 2004.
37. L G., L N., T W., Y Q., Z G., D Y., and X Y., Carbon Nanotube Delivery of the GFP Gene into Mammalian Cells. ChemBioChem, 2006. 7(2): p. 239-242.
38. Y I. and CJ H., High efficiency gene transfer into mammalian cells by a double transfection protocol. Nucleic Acids Research, 1992 ( 20(16)): p. 4367.
39. MA M. and EE S., Nonviral vectors for gene delivery. Chemical Reviews, 2009 109(2): p. 259-302.
40. C M., H O., LR P., S S., MA B., and AP P., Improving chitosan-mediated gene transfer by the introduction of intracellular buffering moieties into the chitosan backbone. Acta Biomaterialia, 2009 (5(8)): p. 2995-3006.
41. Kircheis R W.L., Wagner E., Design and gene delivery activity of modified polyethylenimines. Adv Drug Deliv Rev. , 2001 Dec 31(53(3)): p. 341-58.
42. J Z., JW Y., SW K., and SE K., Intracellular kinetics of non-viral gene delivery using polyethylenimine carriers. Pharmaceutical Research 2007 (24(6)): p. 1079-87.
43. S O., GE P., EA M., KM K., C L., MG C., PR L., A F., and JR O., Efficacy of nonviral gene transfer in the canine brain. Journal of Neurosurgery, 2007 (107(1)): p. 136-44.
44. 張萬豐, 探討聚乙烯亞胺轉殖綠螢光蛋白基因進入老鼠胚胎纖維母細胞的最佳條件, 2008, 嘉南藥理科技大學.
45. M B., U L., R L., C F., Y K., A K., T B., and A G., Gene delivery with low molecular weight linear polyethylenimines. The Journal of Gene Medicine, 2005 (7(10)): p. 1287-98.
46. SW. K., T O., Y T., and I N., Efficacy and cytotoxicity of cationic-agent-mediated nonviral gene transfer into osteoblasts. Journal of Biomedical Materials Research Part A, 2004 (71(2)): p. 308-15.
47. YK O., D S., JM K., HG C., K S., and JJ K., Polyethylenimine-mediated cellular uptake, nucleus trafficking and expression of cytokine plasmid DNA. Gene Therapy 2002 (9(23)): p. 1627-32.
48. Boussif O L.h.F., Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP., A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A. , 1995 Aug 1(92(16)): p. 7297-301.
49. R K., L W., and E W., Design and gene delivery activity of modified polyethylenimines. Advanced Drug Delivery Reviews, 2001 (53(3)): p. 341-58.
50. K S. and SW K., A new synthesis of galactose-poly(ethylene glycol)-polyethylenimine for gene delivery to hepatocytes. Journal of Controlled Release, 2002 (79(1-3)): p. 271-81.
51. E W., M Z., M C., H B., and ML B., Transferrin-polycation conjugates as carriers for DNA uptake into cells. Proceedings of the National Academy of Sciences of the United States of America. , 1990 (87(9)): p. 3410–3414.
52. R K., A K., G W., M K., M O., T F., M B., and E W., Coupling of cell-binding ligands to polyethylenimine for targeted gene delivery. Gene Therapy, 1997(4(5)): p. 409-18.
53. J Z., X W., and S W., Self-assembled ternary complexes of plasmid DNA, low molecular weight polyethylenimine and targeting peptide for nonviral gene delivery into neurons. Biomaterials., 2007 (28(7)): p. 1443-51. .
54. T B., M K., R H., R K., and E W., Different strategies for formation of pegylated EGF-conjugated PEI/DNA complexes for targeted gene delivery. Bioconjugate Chemistry, 2001(12(4)): p. 529-37.
55. HL J., YK K., R A., JW N., MH C., YJ C., T A., and CS C., Chitosan-graft-polyethylenimine as a gene carrier. Journal of Controlled Release, 2007 (117(2)): p. 273-80.
56. B L., XD X., XZ Z., SX C., and RX Z., Low molecular weight polyethylenimine grafted N-maleated chitosan for gene delivery: properties and in vitro transfection studies. Biomacromolecules, 2008 (9(10)): p. 2594-600.
57. JQ G., QQ Z., TF L., WP S., J Z., GP T., WQ L., Y T., and YL H., Gene-carried chitosan-linked-PEI induced high gene transfection efficiency with low toxicity and significant tumor-suppressive activity. International Journal of Pharmaceutics, 2010 (387(1-2)): p. 286-94.
58. QQ Z., JL C., TF L., CX H., GP T., WQ L., Y T., and JQ G., N/P ratio significantly influences the transfection efficiency and cytotoxicity of a polyethylenimine/chitosan/DNA complex. Biological and Pharmaceutical Bulletin, 2009(32(4)): p. 706-10.
59. H W., CY Z., JF W., YB H., and CB L., Enhancement of TAT cell membrane penetration efficiency by dimethyl sulphoxide. Journal of Controlled Release, 2010(143(1)): p. 64-70.
60. M L., M H., A P., and Ü L., Cell-penetrating peptides. . Trends in pharmacological sciences, 2000(21(3)): p. 99-103.
61. IN S., MF A., SP L., and GL W., TAT-mediated protein transduction and targeted delivery of fusion proteins into mitochondria of breast cancer cells. DNA Repair, 2005 (4(4)): p. 511-8.
62. Mäe M L.U., Cell-penetrating peptides as vectors for peptide, protein and oligonucleotide delivery. Curr Opin Pharmacol. , 2006 Oct(6(5)): p. 509-14.
63. J R., CG Q., CL X., QY W., and XJ Z., Development of cell-penetrating peptides as vectors for drug delivery, in Acta pharmaceutica Sinica2010. p. 17-25.
64. A Z., Thermodynamic studies and binding mechanisms of cell-penetrating peptides with lipids and glycosaminoglycans. Advanced Drug Delivery Reviews, 2008 (60(4-5)): p. 580-97.
65. Q C., YW L., and S H., Advances in mechanisms of internalization of cell-penetrating peptides International Journal of Pathology and Clinical Medicine, 2009(29): p. 115-120.
66. S F., Arginine-rich peptides: potential for intracellular delivery of macromolecules and the mystery of the translocation mechanisms. International Journal of Pharmaceutics, 2002(245(1-2)): p. 1-7.
67. SR S., A H., A V.-A., and SF D., In vivo protein transduction: delivery of a biologically active protein into the mouse. . Science, 1999. 285(5433): p. 1569-1572.
68. A A.-F., DS S., M F., BR S., and RL J., Antisense inhibition of P-glycoprotein expression using peptide-oligonucleotide conjugates. Biochemical Pharmacology, 2000(60(1)): p. 83-90.
69. L J., CH T., A M., and R W., High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjugate Chemistry 1999 (10(2)): p. 186-91.
70. HG B., Peptide antibiotics and their role in innate immunity. Annual Review of Immunology, 1995. 13: p. 61-92.
71. ME S., MJ N., WL M., YQ T., W S., and JS C., Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. The Journal of Biological Chemistry, 1992 (267(7)): p. 4292-5.
72. 蔡秉錩, Indolicidin及其類似物之生物活性與直接穿膜特性, 2012, 國立中央大學.
73. Zhang L., A. Rozek, and R.E.W. Hancock, Interaction of cationic antimicrobial peptides with model membranes. Journal of Biological Chemistry, 2001(276(38)): p. 35714-35722.
74. JC H. and CM Y., Molecular dynamics simulations of indolicidin association with model lipid bilayers. Biophysical Journal 2007 92(12): p. L100-2.
75. JE S., JR A., JE V., GG P., and CM. Y., Mechanisms of antimicrobial peptide action: studies of indolicidin assembly at model membrane interfaces by in situ atomic force microscopy. Journal of Structural Biology, 2006 (154(1)): p. 42-58.
76. C S., V K., N S., and R N., Interaction of indolicidin, a 13-residue peptide rich in tryptophan and proline and its analogues with model membranes. . Journal of biosciences, 1998(23(1)): p. 9-13.
77. ST Y., SY S., KS H., and JI K., Design of perfectly symmetric Trp-rich peptides with potent and broad-spectrum antimicrobial activities. International Journal of Antimicrobial Agents, 2006 (27(4)): p. 325-30.
78. 林達翰, Indolicidin 及其類似物的聚集行為及其與仿生細胞膜間之交互作用, 2011, 國立中央大學.
79. TI R., NI K., EA K., and YN A., Indolicidin action on membrane permeability: carrier mechanism versus pore formation. Biochimica et Biophysica Acta, 2011 (1808(1)): p. 91-7.
80. J T. and P V., The use of cell-penetrating peptides for drug delivery. Drug Discovery Today, 2004. 9(23): p. 1012-1019.
81. M Z. and U L., Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Advanced Drug Delivery Reviews, 2005. 57(4): p. 529-545.
82. L F., U S., ToroV C., L C., Y J., U L., and K I., Cellular delivery of a double-stranded oligonucleotide NFB decoy by hybridization to complementary PNA linked to a cell-penetrating peptide. Gene Therapy 2004: p. 1264–1272.
83. WJ Y., J Y., C L., HY W., CW L., L T., SX C., RX Z., and XZ Z., Enhanced nuclear import and transfection efficiency of TAT peptide-based gene delivery systems modified by additional nuclear localization signals. Bioconjugate Chemistry 2012 (23(1)): p. 125-34.
84. SL L. and S W., An endosomolytic Tat peptide produced by incorporation of histidine and cysteine residues as a nonviral vector for DNA transfection. Biomaterials, 2008 (29(15)): p. 2408-14.
85. SH M., DM K., MN K., J G., DC L., IY P., KC P., JS H., CW C., and YI Y., Gene delivery using a derivative of the protein transduction domain peptide, K-Antp. Biomaterials, 2010 Mar(31(7)): p. 1858-64.
86. T L., R A., N O., J S., DM C., I M., JR V., OE S., K E., P G., E E., CI S., B L., Andaloussi S.E., and U L., Delivery of nucleic acids with a stearylated (RxR)4 peptide using a non-covalent co-incubation strategy. Journal of Controlled Release, 2010 (141(1)): p. 42-51.
87. S F., W O., T S., M N., S T., K U., H H., and Y S., Stearylated arginine-rich peptides: a new class of transfection systems. Bioconjugate Chemistry, 2001 (12(6)): p. 1005-11.
88. F A., SL L., and S W., Covalent Attachment of Low Molecular Weight Poly(ethylene imine) Improves Tat Peptide Mediated Gene Delivery. Advanced Materials, 2006. 18(16): p. 2174-2178.
89. W Z., NA F., and AM H., In vitro uptake of polystyrene microspheres: effect of particle size, cell line and cell density. Journal of Controlled Release, 2001 71(7): p. 39-51.
90. SP S., S D., BE C., and KM V., Influence of chitosan structure on the formation and stability of DNA-chitosan polyelectrolyte complexes. Biomacromolecules, 2005 (6(6)): p. 3357-66.
91. J N., X X., M N., R D., R R., J S., U B., R S., L F., T S., T G., W S., and T K., Effects of cell-penetrating peptides and pegylation on transfection efficiency of polyethylenimine in mouse lungs. The Journal of Gene Medicine, 2008(10(11)): p. 1236-46.
92. M R.K., G H., RF L., and SS M., Nanoparticle-mediated gene delivery: state of the art. Expert Opinion on Biological Therapy, 2004(4(8)): p. 1213-24.
93. T Y., A Y., Y M., M F., and Y Y., Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. The Journal of Biological Chemistry, 1991(266(26)): p. 17707-12.
94. A A., M T., AM K., and R L., Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. The Journal of Gene Medicine, 2005(7(5)): p. 657-63.
95. V S., C T., B S., E F., HM C., SRP S., and J M., Chloroquine-enhanced gene delivery mediated by carbon nanotubes. Carbon, 2011. 49(15): p. 5348-5358.
96. BJ A. and TE W., Studies in Molecular Dynamics. I. General Method. Journal of Chemical Physics, 1959(31): p. 459-466.
97. FH S. and A R., Improved simulation of liquid water by molecular dynamics. The Journal of Chemical Physics, 1974(60 ): p. 1545-1557.
98. JA M., BR G., and M K., Dynamics of folded proteins. Nature, 1977(267 ): p. 585-590.
99. BR B., 3rd B.C., Jr M.A., L N., RJ P., B R., Y W., G A., C B., S B., A C., L C., Q C., AR D., M F., S F., J G., M H., W I., K K., T L., J M., V O., E P., RW P., CB P., JZ P., M S., B T., RM V., HL W., X W., W Y., DM Y., and M K., CHARMM: The Biomolecular Simulation Program. Journal of Computational Chemistry 2009(30 ): p. 1545-1614.



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔