(3.238.174.50) 您好!臺灣時間:2021/04/20 22:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張揚廷
研究生(外文):Yang-ting Chang
論文名稱:利用溶劑退火法調控雙團鏈共聚物奈米薄膜之自組裝結構
論文名稱(外文):Self-Assembled Nanostructures in Solvent-Annealed Block Copolymer Thin Films
指導教授:孫亞賢
指導教授(外文):Ya-sen Sun
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學工程與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:119
中文關鍵詞:溶劑退火雙團鏈共聚物
外文關鍵詞:solvent annealblock copolymer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:326
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主題為利用旋鍍方式,製備聚苯乙烯聚氧化乙烯(poly(styrene-block-ethylene oxide), P(S-b-EO))團鏈共聚合物薄膜,探討其共溶劑退火下奈米結構型態。首先將先探討事前利用水氣與醇類進行pre-annealing的步驟,對於團鏈共聚物中兩鏈段之影響差異。由於極性溶劑先膨潤PEO鏈段,增強兩鏈段間的分離強度(因聚苯乙烯為一疏水性鏈段,不會受水氣膨潤而維持在玻璃態,反之,親水性的PEO鏈段將受到水氣膨潤,大幅降低兩鏈段間的相容性,意味著增強了兩鏈段間的分離強度),此後在恆溫17 oC下進行有機溶劑退火程序,以非極性溶劑—苯為例,加入pre-annealing步驟的實驗組可得到長程有序的球相結構薄膜,反觀之,直接進行苯蒸氣退火程序的對照組卻為一紊亂無序的球相結構薄膜,後者原因在於退火過程中,苯蒸氣仍會輕微膨潤PEO鏈段,造成團鏈共聚物的分離強度下降,因此得到無序球陣列結構。
隨後將介紹共溶劑退火之影響系統,同樣先利用極性溶劑膨潤薄膜後(如同上述,藉由水氣預先膨潤的步驟以利提高鏈段間的分離強度後),於恆溫17 oC下,採用非極性(苯、四氫呋喃)搭配極性(水、醇類)溶劑之數種組合進行共溶劑退火程序,在四氫呋喃系統中,與低碳數醇類溶劑(甲醇、乙醇)進行共溶劑退火的薄膜奈米結構,由於低碳數的極性溶劑具有較高的蒸氣壓,於高膨潤程度的共溶劑系統下,結構從無序球相結構直接變為無序圓柱結構;在高碳數醇類溶劑系統中(丙醇、丁醇、正己醇),經由低膨潤效果的退火程序,發現不易直接轉變成圓柱相,以能量觀點而言,推測此轉變過程中衍生一有序的球相態(meta-stable state),須越過此能障方能轉變為有序的平行圓柱相(stable state)。相較於四氫呋喃系統,苯具有較差的膨潤效果(Psat,benzene < Psat,THF),與低碳數醇類溶劑(甲醇、乙醇)會形成無序圓柱相,而與高碳數醇類溶劑(丙醇、丁醇、正己醇)則會形成有序球相。
此外,我們發現當極性溶劑為水與時,在17 oC下與非極性溶劑退火皆得到球相結構。我們嘗試將溫度下降於12oC下,發現雖然在低溫時χ值增加,不過仍得不到球相結構。因此我們利用非極性溶劑為四氫呋喃,極性溶劑為丙醇共溶劑退火,我們發現在20oC下三小時,結構為球與圓柱共存,不過當共溶劑退火到五小時,發現結構變為球相結構,因此,證實說在高溫,雖然蒸氣壓增加,不過因為χ值下降,因此結構變為球相結構,也證實說當極性溶劑為水的系統,因χ值低而得不到圓柱結構。而我們利用相同體積分率,分子量為兩倍的PS-b-PEO,在四氫呋喃與水退火三小時得到平行無序圓柱結構,證實為分離強度的影響。

In this study, I have investigated the micro-phase separated structures of solvent annealed PS-b-PEO thin films in mixed vapors of binary nonpolar/polar solvents. Before solvent annealing, the surface morphology of as-spun films was dominated by disordered spheres. First, polar-solvents were used to preferentially swell PEO chains, by which the segregation strength between the two segments can be enhanced. This stage is called as a “pre-annealing” step. Then the vapor of nonpolar solvents (benzene or THF) was used for annealing thin films at 17 °C. After solvent annealing, the surface morphology was dominated by hexagonal arrays of spheres. By contrast, if thin films were directly exposed to the vapor of benzene or THF without undergoing the pre-annealing step, the surface morphology was dominated by disordered spheres. The reason is that benzene or THF vapor also swelled the PEO domain in addition to swelling the PS domain. This reduced the segregation strength between the two segments.
Next, thin films were exposed to non-polar/polar co-solvent vapors at 17 °C. The non-polar solvents used were, respectively, toluene, benzene and THF, and polar-solvents were water, methanol, ethanol, propanol, butanol, and hexanol, respectively. In systems of solvent annealing in THF/alcohol co-solvent vapors, both methanol and ethanol have high vapor pressure. Upon exposing to the vapor of THF/methanol and THF/ethanol, the surface morphology of solvent-annealed films revealed disordered nanocylinders. By contrast, upon exposing to solvent vapors of THF mixed with propanol, butanol or hexanol which have lower vapor pressure than that of methanol and ethanol, parallel-oriented nanocylinders with little density of defects can be obtained through transitions from disordered spheres to hexagonal packed ones and then to parallel nanocylinders with long-range order. The reason is that the vapor pressure of propanol, butanol and hexanol is lower than that of methanol and ethanol. As a result, the energy barrier for the transformation directly from disordered spheres to lying cylinders with long-range order was high. I speculate that the disordered spheres transform into lying nanocylinders with long-range order proceeding through an intermediate stage of hexagonal-packed spheres.
Furthermore, only spheres were present in thin films with solvent annealing in vapor of THF/water at 17 °C. As the temperature was decreased to 12 °C, the ordering of nanospheres can be improved. Such morphology was also obtained for solvent annealing in vapor of THF/propanol at 20 °C (5h). In the final part of the thesis, I demonstrate that switchable phase transitions can be induced upon solvent annealing at different temperatures or in vapors of different co-solvent mixtures.

目錄

摘要 i
Abstract iii
內容
圖目錄 x
Chapter 1. 簡介 1
1-1 高分子團鏈共聚物自組裝機制 1
1-2 塊材系統 3
1-3 薄膜系統 5
1-3-1 薄膜之厚度效應 5
1-3-2 薄膜之界面能效應 6
1-4 高分子薄膜之應用 7
1-4-1 模板 7
1-4-2 電極層 9
1-4-3 太陽能電池 9
1-5 控制高分子薄膜之有序性排列結構 11
1-5-1 噴嘴鑄造 11
1-5-2 表面改質 12
1-5-3 微波退火 13
1-5-4 基材圖形導向 15
1-5-5 溶劑退火 15
1-6 影響溶劑退火之因素 18
1-6-1 溶劑的選擇性 18
1-6-2 溶劑的揮發速率 20
1-6-3 溶劑退火環境的濕度影響 21
1-6-4 溶劑的蒸氣壓影響 21
1-6-5 溶劑退火時間 22
1-7 溶劑退火誘導相轉變 24
1-8 溶劑退火應用裝置 27
1-9 混和溶劑退火 28
1-10 混和溶劑退火的機制 30
1-11 混和溶劑退火的應用 31
1-12 薄膜非濕潤現象與穩定性 32
1-13 實驗動機 37
Chapter 2. 實驗內容 38
2-1 實驗材料 38
2-1-1 雙團鏈共聚物 38
2-1-2 溶劑 39
2-2 實驗過程 40
2-2-1 清洗基材流程 40
2-2-2 薄膜製備流程 40
2-3 實驗儀器 42
2-4-1 光學電子顯微鏡, OM 43
2-4-2 原子力顯微鏡, AFM 44
2-4-3 高真空場發射掃描式電子顯微鏡(FE-SEM) 46
Chapter 3. 結果與討論 47
3-1預先利用極性溶劑膨潤之影響 47
3-2共溶劑退火對薄膜之形貌機制影響 53
3-2-1 分析點陣列結構 53
3-2-2 甲苯共溶劑退火 56
3-2-3 苯系列之共溶劑退火 60
3-2-4 四氫呋喃共溶劑退火 63
3-2-5 非極性溶劑種類影響共溶劑退火之差異 68
3-2-6 分析梯田結構之結構差異 70
3-2-7 分析四氫呋喃/醇類共溶劑退火機制 73
3-2-8 分析四氫呋喃/水共溶劑退火 77
3-2-9 分析四氫呋喃與醇類共溶劑低溫退火影響 80
3-2-10 溫度差異對於PS-b-PEO結構轉換影響 83
3-2-11分析高分子量PS-b-PEO之四氫呋喃共溶劑退火 85
3-2-12 共溶劑退火影響球與圓柱結構之可逆性 88
Chapter 4. 結論 89
Chapter 5. 參考文獻 91

1. P. Alexandridis and J. F. Holzwarth, “Block Copolymers”, Curr. Opin. Colloid Interface Sci., 5, 312 (2000).
2. F. S. Bates, M. A. Hillmyer, T. P. Lodge, C. M. Bates, K. T. Delaney, G. H. Fredrickson, “Multiblock Polymers: Panacea or Pandora's Box”, Science, 336, 434 (2012).
3. S.P. Hsu, Y.S. Sun, “Controls over Microdomain in Diblock Copolymer Thin Films by Polar/Nonpolar Cosolvent Annealing”, 國立中央大學化學工程研究所碩士論文 (2010).
4. L. Leibler, “Theory of Microphase Separation in Block Copolymers”, Macromolecules, 13, 1062 (1980).
5. M. W. Matsen, F. S. Bates, “Unifying Weak- and Strong-Segregation Block Copolymer Theories”, Macromolecules, 29, 1091 (1996).
6. A. K. Khandpur, S. Forster, F. S. Bates, I. W. Hamley, A. J. Ryan, W. Bras, K. Almdal, K. Mortennsen, “Polyisoprene-Polystyrene Diblock Copolymer Phase Diagram near the Order-Disorder Transition”, Macromolecules, 28, 8796 (1995).
7. R. A. Farrell, N. Petkov, M. A. Morris, J. D. Holmes, “Self-assembled templates for the generation of arrays of 1-dimensional nanostructures: From molecules to devices”, Journal of Colloid and Interface Science, 349, 449 (2010).
8. A. Knoll, A. Horvat, K. S. Lyakhova, G. Krausch, G. J. A. Sevink, A. V. Zvelindovsky, R. Magerle, “Phase Behavior in Thin Films of Cylinder- Forming Block Copolymers”, Phys. Rev. Lett., 89, 035501 ( 2002).
9. A. Horvat, K. S. Lyakhova, G. J. A. Sevink, and A. V. Zvelindovsky, R. Magerle, “Phase behavior in thin films of cylinder-forming ABA block copolymers: Mesoscale modeling”, J. Chem. Phys., 120, 1117 (2004).
10. K. S. Lyakhova, G. J. A. Sevink, A. V. Zvelindovsky, A. Horvat, R. Magerle, “Role of dissimilar interfaces in thin films of cylinder-forming block copolymers”, J. Chem. Phys., 120, 1127 (2004).
11. S. Ludwigs, G. Krausch, R. Magerle, “Phase Behavior of ABC Triblock Terpolymers in Thin Films: Mesoscale Simulations”, Macromolecules, 38, 1859 (2005).
12. H. P. Huinink, J. C. M. Brokken-Zijp, M. A. van Dijk, G. J. A. Sevink, “Asymmetric block copolymers confined in a thin film”, J. Chem. Phys. , 112, 2452 (2000).
13. L. Tsarkova, A. Knoll, G. Krausch, R. Magerle, “Substrate-Induced Phase Transitions in Thin Films of Cylinder-Forming Diblock Copolymer Melts”, Macromolecules, 39, 3608 (2006).
14. T. Ghoshal, T. Maity, J. F. Godsell, S. Roy, M. A. Morris, “Large Scale Monodisperse Hexagonal Arrays of Superparamagnetic Iron Oxides Nanodots: A Facile Block Copolymer Inclusion Method”, Adv. Mater., 24, 2390 (2012).
15. S. M. Kim, S. J. Ku, G. C. Jo, C. H. Bak, J. B. Kim, “Fabrication of versatile nanoporous templates with high aspect ratios by incorporation of Si-containing block copolymer into the lithographic bilayer system”, Polymer, 53, 2283 (2012).
16. E. J. W. Crossland, P. Cunha, S. Ludwigs, M. A. Hillmyer, U. Steiner, “In situ Electrochemical Monitoring of Selective Etching in Ordered Mesoporous Block-Copolymer Templates”, ACS Appl. Mater. Interfaces, 3, 1375 (2011).
17. E. J. W. Crossland, M. Kamperman, M. Nedelcu, C. Ducati, U. Wiesner, D.M. Smilgies, G. E. S. Toombes, M. A. Hillmyer, S. Ludwigs, U. Steiner, H. J. Snaith, “A Bicontinuous Double Gyroid Hybrid Solar Cell”, Nano Lett., 9, 2807 (2009).
18. P. Docampo, M. Stefik, S. Guldin, R. Gunning, N. A. Yufa, N. Cai, P. Wang, U. Steiner ,U. Wiesner, H. J. Snaith, “Triblock-Terpolymer-Directed Self-Assembly of Mesoporous TiO2 : High-Performance Photoanodes for Solid-State Dye-Sensitized Solar Cells”, Adv. Energy Mater., 2, 676 (2012).
19. C. Tang, W. Wu, D. M. Smilgies, K. Matyjaszewski, T. Kowalewski, “Robust Control of Microdomain Orientation in Thin Films of Block Copolymers by Zone Casting”, J. Am. Chem. Soc., 133, 11802 (2011).
20. K. W. Guarini, C. T. Black, E. Huang, S. H. I. Yeung, “Optimization of Diblock Copolymer Thin Film Self Assembly”, Adv. Mater., 14, 1290 (2002).
21. M. S. She, T. Y. Lo, R. M. Ho, “Long-Range Ordering of Block Copolymer Cylinders Driven by Combining Thermal Annealing and Substrate Functionalization”, ACS. Nano, 3, 2000(2013).
22. X. Zhang, K. D. Harris, N. L. Y. Wu, J. N. Murphy, J. M. Buriak, “Fast Assembly of Ordered Block Copolymer Nanostructures through Microwave Annealing”, ACS. Nano, 4, 7021(2010).
23. D. Borah, M. T Shaw, J.D. Holmes, M.A Morris, “Sub-10 nm Feature Size PS-b-PDMS Block Copolymer Structures Fabricated by a Microwave-Assisted Solvothermal Process”, ACS Appl. Mater. Interfaces, 5, 2004(2013).
24. R. A. Segalman, H. Yokoyama, E. J. Kramer, “Graphoepitaxy of Spherical Domain Block Copolymer Films”, Adv. Mater., 13, 1152 (2001).
25. J. Y. Cheng, C. A. Ross, E. L Thomas., H. I. Smith, G. J. Vancso, “Templated Self-Assembly of Block Copolymers: Effect of Substrate Topography”, Adv. Mater., 15, 1599 (2003).
26. S. Park, B. Kim, J. Xu, T. Hofmann, B. M. Ocko, T. P. Russell, “Lateral Ordering of Cylindrical Microdomains Under Solvent Vapor”, Macromolecules, 42, 1278 (2009).
27. J. G. Son, J. B. Chang, K. K. Berggren, C. A. Ross, “Assembly of Sub-10-nm Block Copolymer Patterns with Mixed Morphology and Period Using Electron Irradiation and Solvent Annealing”, Nano Lett., 11, 5079(2011)
28. G. Kim, M. Libera, “Morphological Development in Solvent-Cast Polystyrene-Polybutadiene-Polystyrene (SBS) Triblock Copolymer Thin Films”, Macromolecules, 31, 2569 (1998).
29. J. N. L. Albert, W. S. Young, R. L. Lewis, III, T. D. Bogart, J. R. Smith, T. H. Epps, III, “Systematic Study on the Effect of Solvent Removal Rate on the Morphology of Solvent Vapor Annealed ABA Triblock Copolymer Thin Films”, ACS. Nano, 6, 459(2012).
30. S. Y. Choi, C. Lee, J. W. Lee, C. Park, S. H. Kim, “Dewetting-Induced Hierarchical Patterns in Block Copolymer Films”, Macromolecules, 45, 1492(2012).
31. Y. S. Jung, J. B. Chang, E. Verploegen, K. K. Berggren, C. A. Ross, “A Path to Ultranarrow Patterns Using Self-Assembled Lithography”, Nano Lett., 10, 1000 (2010).
32. S. Park, D. H. Lee, T. P. Russell, “Self-Assembly of Block Copolymers on Flexible Substrates”, Adv. Mater., 22, 1882 (2010).
33. Y. Xuan, J. Peng, L. Cui, H.Wang, B. Li, Y. Han, “Morphology Development of Ultrathin Symmetric Diblock Copolymer Film via Solvent Vapor Treatment”, Macromolecules, 37, 7301( 2004).
34. Y. Wang, X. Hong, B. Liu, C. Ma, C. Zhang, “Two-Dimensional Ordering in Block Copolymer Monolayer Thin Films upon Selective Solvent Annealing”, Macromolecules, 41, 5799( 2006).
35. M. W. Matsen, “Cylinder-sphere epitaxial transitions in block copolymer melts”, J. Chem. Phys., 114, 8165(2001).
36. I. F. Hsieh, H. J. Sun, Q. Fu, B. Lotz, K. A. Cavicchi. S. Z. D. Cheng, “Phase structural formation and oscillation in polystyrene-block-polydimethylsiloxane thin films ”, Soft Matter, 8, 7937(2012).
37. J. E. Seppala, R. L. Lewis , T. H. Epps, III, “Spatial and Orientation Control of Cylindrical Nanostructures in ABA Triblock Copolymer Thin Films by Raster Solvent Vapor Annealing”, ACS. Nano, 6, 9855(2012).
38. Y. S. Jung, C. A. Ross, “Solvent-Vapor-Induced Tunability of Self-Assembled Block Copolymer Patterns”, Adv. Mater., 21, 2540 (2009).
39. Z. Y. Guo, M. S. Lin, Y. T. Chang, Y. S. Sun, Y. W. Chiang, C. Y. Chou, W. Y. Woon, M. C. Chuang, “Surface relief terraces and self-assembled nanostructures in thin block copolymer films with solvent annealing”, Polymer , 53, 4827(2012).
40. B. Kim, S. W. Hong, S. Park, J. Xu, S. K. Hong, T. P. Russell, “Phase transition behavior in thin films of block copolymers by use of immiscible solvent vapors”, Soft Matter, 7, 443(2011).
41. J. N. L. Albert, T. D. Bogart, R. L. Lewis, K. L. Beers, M. J. Fasolka, J. B. Hutchison, B. D. Vogt, T. H. Epps, “Gradient Solvent Vapor Annealing of Block Copolymer Thin Films Using a Microfluidic Mixing Device”, Nano Lett., 11, 1351 (2011).
42. G. Reiter, A. Sharma, A. Casoli, M. O. David, R. Khanna, P. Auroy, “Thin Film Instability Induced by Long-Range Forces”, Langmuir, 15, 2551 (1999).
43. J. C. Meredith, A. P. Smith, A. Karim, E. J. Amis, “Combinatorial Materials Science for Polymer Thin-Film Dewetting”, Macromolecules, 33, 9747 (2000).
44. S. H. Lee, P. J. Yoo, S. J. Kwon, H. H. Lee, “Solvent-driven dewetting and rim instability”, J. Chem. Phys., 121, 4346 (2004).
45. P. M. Buschbaum, E. Bauer, O. Wunnicke, M. Stamm, “The control of thin film morphology by the interplay of dewetting, phase separation and microphase separation”, J. Phys. Condens. Matter, 17, 363–386 (2005).
46. J. Peng, Y. Han, W. Knoll, D. H. Kim, “Development of Nanodomain and Fractal Morphologies in Solvent Annealed Block Copolymer Thin Films”, Macromol. Rapid Commun., 28, 1422 (2007).
47. T. H. Kim, J. Hwang, W. S. Hwang, J. Huh, H. C. Kim, S. H. Kim, J. M. Hong, E. L. Thomas, C. Park, “Hierarchical Ordering of Block Copolymer Nanostructures by Solvent Annealing Combined with Controlled Dewetting”, Adv. Mater., 20, 522 (2008).
48. C. Harrison, M. Park, P. Chaikin, R. A. Register, D. H. Adamson, N. Yao, “Depth Profiling Block Copolymer Microdomains”, Macromolecules, 31, 2185 (1998).
49. K. Fukunaga, H. Elbs, R. Magerle, G. Krausch, N. Yao, “Large-Scale Alignment of ABC Block Copolymer Microdomains via Solvent Vapor Treatment”, Macromolecules, 33, 947 (2000).
50. K. D. F. Wensink, B. Jérôme, “Dewetting Induced by Density Fluctuations” , Langmuir, 18, 413 (2002).
51. M. Konrad, A. Knoll, G. Krausch, R. Magerle, “Volume Imaging of an Ultrathin SBS Triblock Copolymer Film”, Macromolecules, 33, 5518 (2000).
52. I. W. Hamley, “Ordering in thin films of block copolymers: Fundamentals to potential applications”, Progress in Polymer Science, 34, 1161 (2009).
53. K. S. Lyakhova, A. Horvat, A. V. Zvelindovsky, G. J. A. Sevink, “Dynamics of Terrace Formation in a Nanostructured Thin Block Copolymer film”, Langmuir, 22, 5848 (2006).
54. L. Tsarkova, “Distortion of a Unit Cell versus Phase Transition to Nonbulk Morphology in Frustrated Films of Cylinder-Forming Polystyrene‑b‑Polybutadiene Diblock Copolymers”, Macromolecules, 45, 7985(2012).
55. G. Coulon, T. P. Russell, V. R. Deline, P. F. Green, “Surface-induced orientation of symmetric, diblock copolymers: a secondary ion mass-spectrometry study”, Macromolecules, 22, 2581 (1989).
56. M. W. Davidson, M. Abramowitz, “OPTICAL MICROSCOPY”, Online PDF resource, 1999.
57. J. E. Lennard-Jones, “Cohesion”, Proceedings of the Physical Society, 43, 461 (1931).
58. C. Tang, J. Bang, G. E. Stein, G. H. Fredrickson , C. J. Hawker, E. J. Kramer, Michael, J. Wang, “Square Packing and Structural Arrangement of ABC Triblock Copolymer Spheres in Thin Films”, Macromolecules, 41, 4328(2008).
59. J. Brandrup, E. H. Immergut, E. A. Grulke, Polymer Handbook, John Wiley & Sons, New York, 1999.
60. N. Sota, N. Sakamoto, K. Saijo, T. Hashimoto, “Phase Transition from Disordered Sphere to Hex-Cylinder via Transient Ordering into Bcc-Sphere in SIS Triblock Copolymer”, Macromolecules, 36, 4534(2003).





連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔