(34.239.150.57) 您好!臺灣時間:2021/04/14 22:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭閎文
研究生(外文):Hung-wen Cheng
論文名稱:氣相層析法應用於工業排放連續監測
指導教授:王家麟王家麟引用關係
指導教授(外文):Jia-lin Wang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:240
中文關鍵詞:甲烷與總碳氫生質氣體
外文關鍵詞:Methane and total hydrocarbonsBiogas
相關次數:
  • 被引用被引用:3
  • 點閱點閱:160
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的為針對製程中產生之有機氣體成分,開發氣相層析自動線上系統,並運用於:一、煙道氣體;二、生質氣體。
而為瞭解成分的必要性,故層析系統採恆溫(isothermal)且搭配逆吹(back-flush)概念之設計,使管柱能夠在分析時間時完成淨化,而不須高溫烘烤,進而大幅降低分析時間與電力消耗,且兼具長期量測與穩定之特性,以期對前述的兩項議題分別建立適宜系統,並應用於線上(on-line)分析。
實驗系統以二位十孔閥作為主體,串聯適宜的管柱組合與偵測器,輔以層析條件,並對不同分析目的進行系統微調,則可達到對不同的分析目標物進行量測。管柱為自製之填充管柱,填充不同的靜相材料,即可應用於不同的分析目標物。
有別於目前頒布之標準方法,使用吸附管捕捉非甲烷碳氫(NMHCs)以量測甲烷與總碳氫,本研究希冀利用層析概念,使用管柱分離以完成量測;本研究完成「逆吹」與「分流」兩套系統,由於應用於環境端時,逆吹系統之非甲烷總碳氫之峰形過於增寬,而使其精確度表現較為差強人意,故在此選用分流系統與商業化儀器進行平行比對。比對之結果發現,兩者趨勢極為相似,另外,當高濃度非甲烷碳氫欲經由觸媒轉化時,觸媒將無法一次完全轉化,而造成貫流效應,但層析法則是利用逆吹概念將非甲烷碳氫排除於系統外,故將不會影響量測結果。
生質氣體部分,使用實驗室先前建立之系統,對炭化產氣樣品進行離線(off-line)實測,即發現不同時間點產氣濃度將有一趨勢變化,而隨著炭化溫度的提升,產氣濃度(C1~C4)亦隨之上升,最大濃度出現之時間點亦相對往前。同時,亦對新的靜相材料進行測試,藉由不同的管柱組合,可將分析時間縮短至4分鐘內,有助於數據點的密集度,之後將此系統應用於生質物炭化試驗之線上(on-line)分析,可發現其產氣趨勢與離線實驗極為相似,證明此系統可實際應用於線上分析。

This study developed two gas chromatographic (GC) systems: one is to monitor the chemical composition of stack gas from factories, and the other is to analyze the composition of biogas from biomass torrefaction. Both methods have a common ground; that is they both measure methane and non-methane hydrocarbons (NMHCs). However, the first method only separates NMHCs as a group from methane, whereas the second method performs elaborate separation of more than 10 gases.
To allow long-term operation with minimal downtime and maintenance, both GC systems adopted isothermal and back-flush design, involving a 10-port, 2-position switching valve and several column sets with each set consisting of a pre-column and analytical column kept at a constant oven temperature.
Two methods were tested for the first application; they are back-flush and split methods. Because the back-flush method caused the undesired peak tailing with the NMHC peak, the split design was adopted and tested by inter-comparing with the catalytic method which is widely used for the EPA air quality monitoring stations. Although both readings were very similar, the catalytic instrument was found to be susceptible to incomplete catalytic removal of NMHCs resulting in systematic bias, especially when ambient air contained high levels of NMHCs. By contrast, this problem can be fully avoided by our GC method.
In the application of biogas analysis, a GC system with the similar back-flush isothermal concept was built to separate more than 10 species, i.e., N2, O2, CO, CO2, CH4 and C2-C4 NMHCs, for each injection. The system was first tested in the off-line mode, and later adapted to a biomass torrefaction chamber for on-line monitoring gas composition. Both the off-line and on-line results appeared to be very similar, proving that the GC system can perform on-line analysis as planned. Basing on the instantaneous chemical compositional information provided by the on-line GC, the process parameters for a given type of biomass can be optimized accordingly.

目錄
摘要 I
Abstract III
目錄 V
圖目錄 VIII
表目錄 XXIV
第一章 前言 1
1-1 研究源起 1
1-2 甲烷與TNMHCS相關量測方法 3
1-3 生質氣體相關量測方法 11
1-4 量測方法之統整 15
1-5 研究動機 18
第二章 實驗系統與原理 19
2-1 系統架構 19
2-1.1 層析單元 19
2-1.2 進樣單元 21
2-2 工作標準品 23
2-3 單管柱測試 25
第三章 煙道中甲烷與非甲烷總碳氫之量測 35
3-1 連續自動監測設施(CEMS) 35
3-2 揮發性有機物相關法規 38
3-3 甲烷與非甲烷總碳氫化合物氣相層析系統建立 46
3-3.1 逆吹法 47
3-3.2 分流法 62
3-3.3 性能比較 72
3-4 平行比對 73
第四章 生質氣體之應用 78
4-1 生質能源介紹 78
4-1.1 生物質能種類 82
4-1.2 生質氣體之製程方法 83
4-1.3 生質氣體之主要成分 85
4-2 生質氣體系統與討論 87
4-2.1 系統原理 87
4-2.2 分析時間之縮減 89
4-2.3 水氣影響之探討 92
4-2.4 簡易壓力調控設置 95
4-2.5 線上量測系統之建立 97
4-3 生質氣體實測 98
4-3.1 離線試驗 99
4-3.1.1 油棕果顆粒試驗(10%含氧氣氛) 101
4-3.1.2 油棕果顆粒試驗(5%含氧氣氛) 113
4-3.1.3 油棕果顆粒試驗(純氮氣氛) 125
4-3.1.4 油棕果顆粒試驗之綜合比較 136
4-3.1.5 油棕果長纖試驗(純氮氣氛) 139
4-3.1.6 椰纖顆粒試驗(純氮氣氛) 150
4-3.1.7 椰殼纖維試驗(純氮氣氛) 162
4-3.1.8 不同生質物原料之綜合比較 173
4-3.2 線上試驗 176
第五章 結論與未來展望 182
第六章 參考文獻 184
附錄一 190
附錄二 197


1. T.B. Ryerson, M. Trainer, J.S. Holloway, D.D. Parrish, L.G. Huey, D.T. Sueper, G.J. Frost, S.G. Donnelly, S. Schauffler, E.L. Atlas, W.C. Kuster, P.D. Goldan, G. Hübler, J.F. Meagher, F.C. Fehsenfeld (2001) Observations of ozone formation in power plant plumes and implications for ozone control strategies. Science 292, 719-723.
2. X.L. Wei, Y.S. Li, K.S. Lam, A.Y. Wang (2007) Impact of biogenic VOC emissions on a tropical cyclone-related ozone episode in the Pearl River Delta region, China. Atmos. Environ. 41, 7851-7864.
3. 行政院環保署環境檢驗所, 排放管道中總碳氫化合物及非甲烷總碳氫化合物含量自動檢測方法-線上火燄離子化偵測法NIEA A723.73B. 2012
4. USEPA, Method 25 – Determination of total gaseous nonmethane organic emissions as carbon.
5. A.D. Jorgensen, K.C. Picel, V.C. Stamoudis (1990) Prediction of gas chromatography flame ionization detector response factors from molecular structures. Anal. Chem. 62, 683–689.
6. 行政院環保署環境檢驗所, 非甲烷有機氣體排放量測定方法(以碳為基準). 1995
7. A.E. Salo, W.L. Oaks, R.D. MacPhee (1975) Measuring the organic carbon content of Source emissions for air pollution control. Journal of the Air Pollution Control Association 25, 390–393.
8. G.B. Howe, S.K. Gangwal, R.K.M. Jayanty (1983) Validation and improvement of EPA reference method 25 - determination of gaseous nonmethane organic emissions as carbon. USEPA research and development, EPA-600/4-83-008 EPA-600/4-83-008.
9. R. Jayanty, S. Tompkins, R. Fuerst, T. Logan, D.J. VonLehmden (1990) Performance audit results using EPA method 25 during source compliance tests. J. Air Waste Manage. Assoc. 40, 38–41.
10. C. Maris, M.Y. Chung, R. Lueb, U. Krischke, R. Meller, M.J. Fox, S.E. Paulsona (2003) Development of instrumentation for simultaneous analysis of total non-methane organic carbon and volatile organic compounds in ambient air. Atmos. Environ. 37, Supplement No. 2 S149–S158.
11. M.Y. Chung, C. Maris, U. Krischke, R. Meller, S.E. Paulson (2003) An investigation ofthe relationship between total non-methane organic carbon and the sum ofspeciated hydrocarbons and carbonyls measured by standard GC/FID: measurements in the Los Angeles air basin. Atmos. Environ. 37, Supplement No. 2 S159–S170.
12. 行政院環保署環境檢驗所, 空氣中總揮發性有機化合物檢測方法-不銹鋼採樣筒/火焰離子化偵測法. 2006
13. M.J. Prins , K.J. Ptasinski, F.J.J.G. Janssen (2006) Torrefaction of wood Part 2. Analysis of products. J. Anal. Appl. Pyrolysis 77, 35–40.
14. J. Deng, G.J. Wang, J.H. Kuang, Y.L. Zhang, Y.H. Luo (2009) Pretreatment of agricultural residues for co-gasification via torrefaction, J. Anal. Appl. Pyrolysis 86, 331–337.
15. P.C.A. Bergman, A.R. Boersma, R.W.R. Zwart, J.H.A. Kiel (2005) Torrefaction for Biomass Co-firing in Existing Coal-fired Power Stations. BIOCOAL, ECN Report#ECN-C-05-013
16. L. Pommer, L.Gerber, I. Olofsson, S. Wiklund-lindstrom, A. Nordin (2011) Gas composition from biomass torrefaction-preliminary results. 19th European Biomass Conference and Exhibition, Berlin, Germany
17. A. Dufour, P. Girods, E. Masson, S. Normand, Y. Rogaume, A. Zoulalian (2007) Comparison of Two Methods of Measuring Wood Pyrolysis Tar. Journal of Chromatography A 1164, 240–247.
18. R. Andersson, M. Boutonnet, S. Järås (2012) On-line gas chromatographic analysis of higher alcohol synthesis products from syngas. J. Chromatogr. A 1247, 134– 145.
19. 環境分析學會, 環境分析─原理與應用. 2012
20. J.L. Wang, S.R. Kuo, S.S. Ma, T.Y. Chen (2001) Construction of a low-cost automated chromatographic system for the measurement of ambient methane. Anal. Chim. Acta 448, 187-193.
21. 李雅琳, 以重量法製備微量揮發性有機化合物標準氣體之研究. 中央大學化學研究所碩士論文 2005
22. 行政院環境保護署, 固定汙染源空氣汙染物連續自動監測設施管理辦法. 2003
23. USEPA 40CFR60
http://yosemite.epa.gov/r9/r9nsps.nsf/ViewStandards?ReadForm
24. United States Environmental Protection Agency (USEPA)
http://www.epa.gov/airmarkets/emissions/continuous-factsheet.html
25. USEPA Acid Rain Program
http://www.epa.gov/airmarkt/progsregs/arp/
26. USEPA NOX Budget Trading Program
http://www.epa.gov/airmarkets/progsregs/nox/
27. 行政院環境保護署 固定汙染源管制
http://stationary.estc.tw/meat.asp?ctNode=414
28. 行政院環境保護署 環保法規-空氣汙染防制
http://ivy5.epa.gov.tw/epalaw/index.aspx
29. 行政院環境保護署, 揮發性有機物空氣污染管制及排放標準. 1997
30. 行政院環境保護署, 半導體製造業空氣污染管制及排放標準. 1999
31. 行政院環境保護署, 光電材料及元件製造業空氣污染管制及排放標準. 2006
32. 行政院環境保護署, 膠帶製造業揮發性有機物空氣污染管制及排放標準. 2008
33. 行政院環境保護署, 空氣污染防制法施行細則. 1967
34. 行政院環境保護署, 特殊性工業區緩衝地帶及空氣品質監測設施設置標準. 2012
35. 李明霞, 以逆吹式氣相層析法分析氣體成份. 中央大學化學研究所碩士論文 2012
36. International Energy Agency, Renewable information 2011. 2011
37. 經濟部能源局, 能源統計手冊. 2011
38. J. Lehmann (2007) A handful of carbon. Nature 447, 143−144.
39. F. Cherubini, G. Jungmeier (2010) LCA of a biorefinery concept producing bioethanol, bioenergy, and chemicals from switchgrass. Int. J. Life Cycle Assess 15, 53−66.
40. B.Y. Xiao, Y.P. Han, J.X. Liu (2010) Evaluation of biohydrogen production from glucose and protein at neutral initial pH. Int. J. Hydrogen Energy 35, 6152-6160.
41. L. Appels, J. Baeyens, J. Degrève, R. Dewil (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Progress in Energy and Combustion Science 34, 755-781.
42. H. Zhu, A. Stadnyk, M. Béland, P. Seto (2008) Co-production of hydrogen and methane from potato waste using a two-stage anaerobic digestion process. Bioresource Technology 99, 5078-5084.
43. J.A. Ruiz, M.C. Jua´rez , M.P. Morales, P. Mun˜oz, M.A. Mendı´vil (2013) Biomass gasification for electricity generation: Review of current technology barriers. Renewable and Sustainable Energy Reviews 18, 174–183.
44. M.E. Dry (2002) The Fischer–Tropsch process: 1950–2000. Catalysis Today 71, 227–241.
45. A. Go´mez-Barea, B. Leckner (2010) Modeling of biomass gasification in fluidized bed. Progress in Energy and Combustion Science 36, 444–509.
46. E. Butlera, G. Devlina, D. Meierb, K. McDonnella (2011) A review of recent laboratory research and commercial developments in fast pyrolysis and upgrading. Renewable and Sustainable Energy Reviews 15, 4171–4186.
47. A. Quek, R. Balasubramanian (2013) Liquefaction of waste tires by pyrolysis for oil and chemicals—A review. J. Anal. Appl. Pyrolysis 101, 1–16.
48. C.A.P. Bergman, J.H.A. Kiel (2005) Torrefaction for biomass upgrading.    14th European Biomass Conference & Exhibition 11-18
49. P.C.A. Bergman, A.R. Boersma, R.W.H. Zwart, J.H.A. Kiel (2005) Development of torrefaction for biomass co-firing in existing coal-fired power station, ECN Report, ECN-C-05-013, The Netherlands:Energy Research Center of the Netherlands (ECN)
50. S. Sadaka, S. Negi (2009) Improvements of Biomass Physical and Thermochemical Characteristics via Torrefaction Process, Environmental Progress & Sustainable Energy 28, 427-434.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔