(3.227.208.0) 您好!臺灣時間:2021/04/18 14:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳雅玲
研究生(外文):Ya-ling Chen
論文名稱:整合科技接受模型與固守現狀觀點探討使用者對科技產品接受意圖之研究-以遠距照護服務為例
指導教授:洪秀婉洪秀婉引用關係沈建文沈建文引用關係
指導教授(外文):Shiu-wan HungChien-wen Shen
學位類別:碩士
校院名稱:國立中央大學
系所名稱:企業管理學系
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:82
中文關鍵詞:科技接受模型固守現狀觀點遠距照護服務
外文關鍵詞:Technology Acceptance ModelStatus Quo Bias TheoryTelecare
相關次數:
  • 被引用被引用:3
  • 點閱點閱:527
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:46
  • 收藏至我的研究室書目清單書目收藏:3
隨著人口高齡化以及現代人生活習慣的改變,造成慢性疾病人口數不斷攀升,且年齡層有逐漸下降的趨勢,面對長期照護需求的增加,各國紛紛推動資訊通技術來發展遠距照護服務,以滿足龐大的健康照護需求,我國政府更將其列為國家未來發展重點之一,然而截至目前,使用過遠距照護的民眾仍在少數,因此如何有效的推動遠距照護服務,為目前迫切需要研究的議題。有別於過去討論使用者對遠距照護採用意圖之研究,多著重於探討哪些正面因素會提升使用者的採用意圖,而忽略負面會降低使用者意圖之因素。故本研究以科技接受模型為理論基礎,加入創新擴散理論和延伸構面可取得性,以及根據固守現狀觀點為基礎所提出的惰性、科技焦慮、轉換成本與沉沒成本,欲建立一個整體性的研究模型,來解釋使用者對於遠距照護服務的採用意圖。本研究採用問卷調查法,共計回收有效問卷281份,以線性結構方程式進行研究假說之分析。本研究經由實證分析結果發現知覺有用性與相容性對使用者態度有顯著的正向影響;可取得性對知覺有用性與知覺易用性有顯著的正向影響;科技焦慮會對知覺易用性、知覺有用性與相容性有顯著的負向影響;轉換成本對使用者態度有顯著的負向影響。
With the population ages and the change of lifestyle, the population of chronic diseases is increasing and the average age of chronic is falling. Most developed countries are facing the increased demand of long-term care. Given that, the telecare is a promising innovation that deserves lots of governments’ attention to develop.
As far as we know, previous studies have focused on how to enable user’s adoption behavioral intention. However, little research has performed on what factors will fosters negative attitudes. The purpose of this study is to give an overview perspective about the factors influencing the user’s adoption behavioral intention. The study is based on Technology Acceptance Model (TAM), and integrating Innovation Diffusion Theory (IDT), extend factor Availability. Additionally, according to the Status Quo Bias Theory, the model combined four dimensions including Sunk Costs, Transition Costs, Inertia and Technology Anxiety.
The research model was tested with data collected from 281 potential users. The results of this study were summarized as follows: Perceived Usefulness and Compatibility have the positive effect on Behavioral Intention; Availability has the positive effect on Perceived Usefulness and Perceived Ease of Use; Technology Anxiety has the negative effect on Perceived Usefulness,, Perceived Ease of Use and Compatibility; Transition Costs has the negative effect on Behavioral Intention.

中文摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 vii
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機 2
1-3 研究目的 4
1-4 研究流程 5
第二章 文獻探討 6
2-1 科技接受模型相關理論 6
2-1-1 理性行為理論(Theory of Reasoned Action, TRA) 6
2-1-2 計畫行為理論(Theory of Planned Behavior, TPB) 8
2-1-3 科技接受模型(Technology Acceptance Model, TAM) 9
2-2 創新擴散理論(Innovation Diffusion Theory, IDT) 12
2-3 固守現狀觀點(Status Quo Bias Theory) 15
第三章 研究方法 17
3-1 研究架構 17
3-2 研究樣本 18
3-3 研究假說 19
3-4 變數的操作型定義與衡量構面 25
3-5 資料收集與分析方法 30
第四章 實證分析 32
4-1 敘述性統計分析 32
4-2 信度分析 36
4-3 效度分析 37
4-4 線性結構模型分析 41
第五章 結論與建議 47
5-1 結論 47
5-2 實務意涵 51
5-3 研究限制與建議 53
參考文獻 54
附錄一 遠距照護服務 62
附錄二 研究問卷 69

中文部分
[1] 周春珍, 張蓓莉, 李冠慧, 和李亭亭. (2009). 科技始於人性-淺談遠距醫療於老人健康照護之應用. 護理雜誌, 56(6), 76-80.
[2] 林淑霞, 劉榮宏, 殷偉賢, 陳冠群, 葉明陽, 蔡勝國, 和陳俐君. (2009). 民眾對遠距健康照護服務之認知與需求調查研究—以心臟病, 高血壓及糖尿病為範疇. 臺灣公共衛生雜誌, 28(6), 552-564.
[3] 徐業良. (2008年). 老人福祉科技與遠距居家照護技術. 滄海書局(1版).
[4] 張峰源. (2006). 資通訊科技應用於健康照護發展現況. 長期照護雜誌, 10(2), 101-110.
[5] 張彩秀, 葉明珍, 樓美玲, 劉麗芳, 和洪麗珍. (2007). 居家主照顧者與護理人員對遠距居家照護需求之認知差異. 澄清醫護管理雜誌, 3(1), 27-35.
[6] 張慈映. (2010). 適合僑外商來台投資產業建議-遠距照護產業. 工研院 IEK.
[7] 許哲瀚, 和唐憶淨. (2008). 遠距居家照護的現況與未來. 台灣老年醫學暨老年學雜誌, 3(4), 272-285.
[8] 經建會. (2006). 遠距照護服務,落實保件優先概念. 工業技術與資訊, 9-10.
[9] 魏明敏、卞秀娟、王瑞蓮、蔡秀玲、楊淑惠. (2007). 實用公共衛生營養學. 華格那企業(三版), p.5.5-5.13.
[10] 台大醫院遠距照護中心
http://www.ntuh.gov.tw/telehealth/default.aspx
[11] 行政院衛生署遠距健康照護服務發展計畫
http://60.250.13.200/dotnetnuke/%E9%81%A0%E8%B7%9D%E5%81%A5%E5%BA%B7%E7%85%A7%E8%AD%B7%E6%9C%8D%E5%8B%99%E5%85%A5%E5%8F%A3%E7%B6%B2.aspx
[12] 振興醫院遠距照護中心
http://home.chgh.org.tw/chgh/passport/index.jspx

英文部分
[1] Agarwal, Ritu, & Prasad, Jayesh. (1998). A conceptual and operational definition of personal innovativeness in the domain of information technology. Information systems research, 9(2), 204-215.
[2] Agarwal, Ritu, & Prasad, Jayesh. (1999). Are individual differences germane to the acceptance of new information technologies? Decision sciences, 30(2), 361-391.
[3] Agrell, Henrik, Dahlberg, Sara, & Jerant, Anthony F. (2000). Patients' perceptions regarding home telecare. Telemedicine journal and e-health, 6(4), 409-415.
[4] Ajzen, Icek. (1985). From intentions to actions: A theory of planned behavior: Springer.
[5] Asua, José, Orruño, Estibalitz, Reviriego, Eva, & Gagnon, Marie P. (2012). Healthcare professional acceptance of telemonitoring for chronic care patients in primary care. BMC medical informatics and decision making, 12(1), 139.
[6] Bagozzi, Richard P, & Yi, Youjae. (1988). On the evaluation of structural equation models. Journal of the academy of marketing science, 16(1), 74-94.
[7] Barnes, Stuart J, & Vidgen, Richard. (2012). User acceptance and corporate intranet quality: An evaluation with iQual. Information & Management, 49(3), 164-170.
[8] Bhattacherjee, Anol, & Hikmet, Neset. (2007). Physicians' Resistance toward Healthcare Information Technologies: A Dual-Factor Model. Paper presented at the System Sciences, 2007. HICSS 2007. 40th Annual Hawaii International Conference on.
[9] Bock, Gee W, & Kim, Young-Gul. (2002). Breaking the myths of rewards: an exploratory study of attitudes about knowledge sharing. Information Resources Management Journal (IRMJ), 15(2), 14-21.
[10] Brockner, Joel, Rubin, Jeffrey Z, Fine, Judy, Hamilton, Thomas P, Thomas, Barbara, & Turetsky, Beth. (1982). Factors affecting entrapment in escalating conflicts: The importance of timing. Journal of Research in Personality, 16(2), 247-266.
[11] Brosnan, Mark J. (1999). Modeling technophobia: a case for word processing. Computers in Human Behavior, 15(2), 105-121.
[12] Brown, Michael W, & Cudeck, Robert. (1993). Alternative ways of assessing model fit. Testing structural equation models, 154, 136-162.
[13] Brown, Susan A, Dennis, Alan R, & Venkatesh, Viswanath. (2010). Predicting collaboration technology use: Integrating technology adoption and collaboration research. Journal of Management Information Systems, 27(2), 9-54.
[14] Burnham, Thomas A, Frels, Judy K, & Mahajan, Vijay. (2003). Consumer switching costs: a typology, antecedents, and consequences. Journal of the Academy of Marketing Science, 31(2), 109-126.
[15] Chang, Su‐Chao, & Tung, Feng‐Cheng. (2008). An empirical investigation of students' behavioural intentions to use the online learning course websites. British Journal of Educational Technology, 39(1), 71-83.
[16] Chen, Lei-da, Gillenson, Mark L, & Sherrell, Daniel L. (2002). Enticing online consumers: an extended technology acceptance perspective. Information & Management, 39(8), 705-719.
[17] Chin, Wynne W, & Todd, Peter A. (1995). On the use, usefulness, and ease of use of structural equation modeling in MIS research: a note of caution. MIS quarterly, 237-246.
[18] Davis, Fred D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 319-340.
[19] Davis, Fred D, Bagozzi, Richard P, & Warshaw, Paul R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management science, 35(8), 982-1003.
[20] de Veer, Anke, Fleuren, Margot, Bekkema, Nienke, & Francke, Anneke. (2011). Successful implementation of new technologies in nursing care: a questionnaire survey of nurse-users. BMC medical informatics and decision making, 11(1), 67.
[21] de Veer, Anke JE, & Francke, Anneke L. (2010). Attitudes of nursing staff towards electronic patient records: a questionnaire survey. International journal of nursing studies, 47(7), 846-854.
[22] Delone, William H. (2003). The DeLone and McLean model of information systems success: a ten-year update. Journal of management information systems, 19(4), 9-30.
[23] Demiris, George, Doorenbos, Ardith Z, & Towle, Cara. (2009). Ethical considerations regarding the use of technology for older adults. The case of telehealth. Research in gerontological nursing, 2(2), 128.
[24] Dyck, Jennifer L, & Smither, Janan Al-Awar. (1992). Computer anxiety and the older adult: Relationships with computer experience, gender, education and age. Paper presented at the Proceedings of the Human Factors and Ergonomics Society Annual Meeting.
[25] Dyck, Jennifer L, & Smither, Janan Al-Awar. (1996). Older adults' acquisition of word processing: The contribution of cognitive abilities and computer anxiety. Computers in Human Behavior, 12(1), 107-119.
[26] Falk, T., Schepers, J., Hammerschmidt, M., & Bauer, H. H. (2007). Identifying cross-channel dissynergies for multichannel service providers. Journal of Service Research, 10(2), 143-160. doi: 10.1177/1094670507306683
[27] Festinger, Leon. (1962). A Theory of Cognitive Dissonance (Vol. 2): Stanford university press.
[28] Fishbein, Martin, & Ajzen, Icek. (1975). Belief, attitude, intention and behavior: An introduction to theory and research.
[29] Fornell, Claes, & Larcker, David F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research, 39-50.
[30] Frost, & Consulting, Sullivan. (2009). Gauteng BPO Marketing Strategy: An analysis of market and industry conditions for the development of an effective marketing strategy: Frost & Sullivan Cape Town.
[31] Gerstberger, Peter G, & Allen, Thomas John. (1968). Criteria used by research and development engineers in the selection of an information source. The Journal of applied psychology, 52(4), 272.
[32] Hair, Joseph, Anderson, Rolph E, Tatham, Ronald L, & Black, William C. (1998). Multivariate data analysis: Upper Saddle River, NJ: Prentice Hall.
[33] Hanson, Julienne, Percival, John, Aldred, Hazel, Brownsell, Simon, & Hawley, Mark. (2007). Attitudes to telecare among older people, professional care workers and informal carers: a preventative strategy or crisis management? Universal Access in the Information Society, 6(2), 193-205.
[34] Hardy, Andrew P. (1982). The selection of channels when seeking information: Cost/benefit vs least-effort. Information Processing & Management, 18(6), 289-293.
[35] Hebert, Marilynne A, & Korabek, Barbara. (2004). Stakeholder readiness for telehomecare: implications for implementation. Telemedicine Journal and e-Health, 10(1), 85-92.
[36] Hirschheim, Rudy, & Newman, Michael. (1988). Information systems and user resistance: theory and practice. The Computer Journal, 31(5), 398-408.
[37] Hong, Se-Joon, & Tam, Kar Yan. (2006). Understanding the adoption of multipurpose information appliances: the case of mobile data services. Information Systems Research, 17(2), 162-179.
[38] Horan, Thomas A, Tulu, Bengisu, Hilton, Brian, & Burton, Jacqueline. (2004). Use of online systems in clinical medical assessments: an analysis of physician acceptance of online disability evaluation systems. Paper presented at the System Sciences, 2004. Proceedings of the 37th Annual Hawaii International Conference on.
[39] Horton, Khim. (2008). The use of telecare for people with chronic obstructive pulmonary disease: implications for management. Journal of Nursing Management, 16(2), 173-180.
[40] Hsieh, JJ, Rai, Arun, & Keil, Mark. (2008). Understanding digital inequality: Comparing continued use behavioral models of the socio-economically advantaged and disadvantaged. Mis Quarterly, 32(1), 97-126.
[41] Hsu, Chin-Lung, & Lin, Judy Chuan-Chuan. (2008). Acceptance of blog usage: The roles of technology acceptance, social influence and knowledge sharing motivation. Information & Management, 45(1), 65-74.
[42] Huang, Jui-Chen. (2013). Innovative health care delivery system—A questionnaire survey to evaluate the influence of behavioral factors on individuals' acceptance of telecare. Computers in biology and medicine.
[43] Hung, Kevin, & Zhang, Yuan-Ting. (2003). Implementation of a WAP-based telemedicine system for patient monitoring. Information Technology in Biomedicine, IEEE Transactions on, 7(2), 101-107.
[44] Hung, Shin-Yuan, Ku, Yi-Cheng, & Chien, Jui-Chi. (2012). Understanding physicians’ acceptance of the Medline system for practicing evidence-based medicine: A decomposed TPB model. International Journal of Medical Informatics, 81(2), 130-142.
[45] Inder, Brett, & O'Brien, Terry. (2003). The endowment effect and the role of uncertainty. Bulletin of Economic Research, 55(3), 289-301.
[46] Jones, Michael A, Mothersbaugh, David L, & Beatty, Sharon E. (2002). Why customers stay: measuring the underlying dimensions of services switching costs and managing their differential strategic outcomes. Journal of Business Research, 55(6), 441-450.
[47] Kahneman, Daniel, & Tversky, Amos. (1979). Prospect theory: An analysis of decision under risk. Econometrica: Journal of the Econometric Society, 263-291.
[48] Karahanna, Elena, & Straub, Detmar W. (1999). The psychological origins of perceived usefulness and ease-of-use. Information & Management, 35(4), 237-250.
[49] Keil, Mark, Mann, Joan, & Rai, Arun. (2000). Why software projects escalate: an empirical analysis and test of four theoretical models 1, 2. Mis Quarterly, 24(4), 631-664.
[50] Kim, H. W., & Gupta, S. (2012). Investigating Customer Resistance to Change in Transaction Relationship with an Internet Vendor. Psychology & Marketing, 29(4), 257-269. doi: 10.1002/mar.20519
[51] Kim, Hee-Woong. (2011). The effects of switching costs on user resistance to enterprise systems implementation. Engineering Management, IEEE Transactions on, 58(3), 471-482.
[52] Kim, Hee-Woong, & Kankanhalli, A. (2009). Investigating User Resistance to Information Systems Implementation: A Status Quo Bias Perspective. Mis Quarterly, 33(3), 567-582.
[53] Kline, RB. (1998). Principles and Practice of Structural Equation Modeling (Guilford, New York, NY).
[54] Kuo, Ying-Feng, & Yen, Shieh-Neng. (2009). Towards an understanding of the behavioral intention to use 3G mobile value-added services. Computers in Human Behavior, 25(1), 103-110.
[55] Laguna, Kerrie, & Babcock, Renee L. (1997). Computer anxiety in young and older adults: Implications for human-computer interactions in older populations. Computers in human behavior, 13(3), 317-326.
[56] Levy, Shařon, Jack, Nat, Bradley, David, Morison, Moya, & Swanston, Michael. (2003). Perspectives on telecare: the client view. Journal of telemedicine and telecare, 9(3), 156-160.
[57] Liu, Binbin. (2012). Understanding Consumers' Intention to Use Mobile Payment Services: The Perspective of University Students in Northern Jiangsu Area. Paper presented at the Business Computing and Global Informatization (BCGIN), 2012 Second International Conference on.
[58] Loiacono, Eleanor T, Watson, Richard T, & Goodhue, Dale L. (2007). WebQual: an instrument for consumer evaluation of web sites. International Journal of Electronic Commerce, 11(3), 51-87.
[59] Mallenius, Seppo, Rossi, Matti, & Tuunainen, Virpi Kristiina. (2007). Factors affecting the adoption and use of mobile devices and services by elderly people–results from a pilot study. 6th Annual Global Mobility Roundtable.
[60] Mao, En, & Palvia, Prashant. (2008). Exploring the effects of direct experience on IT use: An organizational field study. Information & Management, 45(4), 249-256.
[61] Markus, M Lynne. (1983). Power, politics, and MIS implementation. Communications of the ACM, 26(6), 430-444.
[62] Carl R May, Tracy L Finch, James Cornford, Catherine Exley, Claire Gately, Sue Kirk, K N Jenkings, Janice Osbourne, A L Robinson, Anne Rogers, Robert Wilson and Frances S Mair. (2011). Integrating telecare for chronic disease management in the community: What needs to be done? BMC health services research, 11(1), 131.
[63] M. A. Jones, D. L. Mothersbaugh, and S. E. Beatty. (2002). Why customers stay: Measuring the underlying dimensions of services switching costs and managing their differential strategic outcomes J. Bus. Res.,55,pp. 441–450,.
[64] Moore, Gary C, & Benbasat, Izak. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. Information systems research, 2(3), 192-222.
[65] Ong, Chorng-Shyong, Lai, Jung-Yu, & Wang, Yi-Shun. (2004). Factors affecting engineers’ acceptance of asynchronous e-learning systems in high-tech companies. Information & management, 41(6), 795-804.
[66] Ouellette, Judith A, & Wood, Wendy. (1998). Habit and intention in everyday life: the multiple processes by which past behavior predicts future behavior. Psychological bulletin, 124(1), 54.
[67] Pavlou, Paul A. (2003). Consumer acceptance of electronic commerce: integrating trust and risk with the technology acceptance model. International journal of electronic commerce, 7(3), 101-134.
[68] Pavlou, Paul A, Liang, Huigang, & Xue, Yajiong. (2007). Understanding and mitigating uncertainty in online exchange relationships: A principal-agent perspective. Mis Quarterly, 31(1), 105-136.
[69] Peeters, José M, de Veer, Anke JE, van der Hoek, Lucas, & Francke, Anneke L. (2012). Factors influencing the adoption of home telecare by elderly or chronically ill people: a national survey. Journal of Clinical Nursing, 21(21-22), 3183-3193.
[70] Plouffe, Christopher R, Hulland, John S, & Vandenbosch, Mark. (2001). Research report: richness versus parsimony in modeling technology adoption decisions—understanding merchant adoption of a smart card-based payment system. Information systems research, 12(2), 208-222.
[71] Polites, Greta L, & Karahanna, Elena. (2012). Shackled to the status quo: the inhibiting effects of incumbent system habit, switching costs, and inertia on new system acceptance. MIS Quarterly, 36(1), 21-42.
[72] Premkumar, G, Ramamurthy, K, & Liu, Hsin-Nan. (2008). Internet messaging: An examination of the impact of attitudinal, normative, and control belief systems. Information & Management, 45(7), 451-457.
[73] Rice, Ronald E. (1987). Computer-Mediated Communication and Organizational Innovation. Journal of Communication, 37(4), 65-94.
[74] Rogers. (1983). Diffusion of innovations. New York.
[75] Rogers. (1995). Diffusion of innovations: Simon and Schuster.
[76] Ryu, Min-Ho, Kim, Seongcheol, & Lee, Euehun. (2009). Understanding the factors affecting online elderly user’s participation in video UCC services. Computers in Human Behavior, 25(3), 619-632.
[77] Saleeby, Jacqueline R. (2000). Health beliefs about mental illness: An instrument development study. American Journal of Health Behavior, 24(2), 83-95.
[78] Samuelson, William, & Zeckhauser, Richard. (1988). Status quo bias in decision making. Journal of risk and uncertainty, 1(1), 7-59.
[79] Schilke, Oliver, & Wirtz, Bernd W. (2012). Consumer acceptance of service bundles: An empirical investigation in the context of broadband triple play. Information & Management, 49(2), 81-88.
[80] Shin, Dong-Hee. (2007). User acceptance of mobile Internet: Implication for convergence technologies. Interacting with Computers, 19(4), 472-483.
[81] Shin, Dong Hee. (2009). Determinants of customer acceptance of multi-service network: An implication for IP-based technologies. Information & Management, 46(1), 16-22.
[82] Smith, H Jeff, Milberg, Sandra J, & Burke, Sandra J. (1996). Information privacy: measuring individuals' concerns about organizational practices. MIS quarterly, 167-196.
[83] Sonnenwald, Diane H, Whitton, Mary C, & Maglaughlin, Kelly L. (2003). Evaluating a scientific collaboratory: Results of a controlled experiment. ACM Transactions on Computer-Human Interaction (TOCHI), 10(2), 150-176.
[84] Srite, Mark, Thatcher, Jason Bennett, & Galy, Edith. (2008). Does within-culture variation matter? An empirical study of computer usage. Journal of Global Information Management (JGIM), 16(1), 1-25.
[85] Straub, Detmar, & Karahanna, Elena. (1998). Knowledge worker communications and recipient availability: Toward a task closure explanation of media choice. Organization Science, 9(2), 160-175.
[86] Sun, Yuan, Bhattacherjee, Anol, & Ma, Qingguo. (2009). Extending technology usage to work settings: The role of perceived work compatibility in ERP implementation. Information & Management, 46(6), 351-356.
[87] Taylor, Shirley, & Todd, Peter. (1995). Assessing IT usage: The role of prior experience. MIS quarterly, 561-570.
[88] Tornatzky, Louis G, & Klein, Katherine J. (1982). Innovation characteristics and innovation adoption-implementation: A meta-analysis of findings. IEEE Transactions on engineering management, 29(1), 28-45.
[89] Tung, Feng-Cheng, Chang, Su-Chao, & Chou, Chi-Min. (2008). An extension of trust and TAM model with IDT in the adoption of the electronic logistics information system in HIS in the medical industry. International journal of medical informatics, 77(5), 324.
[90] Venkatesh, Viswanath. (2000). Determinants of perceived ease of use: Integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information systems research, 11(4), 342-365.
[91] Venkatesh, Viswanath, & Davis, Fred D. (2000). A theoretical extension of the technology acceptance model: four longitudinal field studies. Management science, 46(2), 186-204.
[92] Venkatesh, Viswanath, Morris, Michael G, Davis, Gordon B, & Davis, Fred D. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 425-478.
[93] Walters, C Glenn, & Bergiel, Blaise J. (1989). Consumer behavior: A decision-making approach: South-Western Publishing Company.
[94] Wu, Ing-Long, Li, Jhao-Yin, & Fu, Chu-Ying. (2011). The adoption of mobile healthcare by hospital's professionals: an integrative perspective. Decision Support Systems, 51(3), 587-596.
[95] Wu, Jen-Her, & Hisa, Tzyh-Lih. (2003). Hypercube Innovation: An Analysis of Web-based commerce, M-commerce, and U-commerce. PACIS 2003 Proceedings, 129.
[96] Wu, Jen-Her, & Wang, Shu-Ching. (2005). What drives mobile commerce?: An empirical evaluation of the revised technology acceptance model. Information & management, 42(5), 719-729.
[97] Wu, Jen-Her, Wang, Shu-Ching, & Lin, Li-Min. (2007). Mobile computing acceptance factors in the healthcare industry: A structural equation model. International journal of medical informatics, 76(1), 66-77.
[98] Xue, Lishan, Yen, Ching Chiuan, Chang, Leanne, Chan, Hock Chuan, Tai, Bee Choo, Tan, Say Beng, . . . Choolani, Mahesh. (2012). An exploratory study of ageing women's perception on access to health informatics via a mobile phone-based intervention. International Journal of Medical Informatics.
[99] Cheolho Yoon,(2009). The effects of national culture values on consumer acceptance of e-commerce: Online shoppers in China. Information & Management, 46(6), 294-301.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔