跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/15 04:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇柏誠
研究生(外文):Pai-Cheng Su
論文名稱:鈀金鎳觸媒在鹼性乙醇氧化環境下結構與活性的關係
論文名稱(外文):The Structure-Activity Relationship of Carbon-Supported Pd3AuNi Catalysts for Ethanol Oxidation Reaction in Alkaline Solution
指導教授:王冠文王冠文引用關係
指導教授(外文):Kuan-Wen Wang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:72
中文關鍵詞:鈀金鎳觸媒乙醇氧化反應鹼性溶液長時間穩定性X光吸收能譜儀程溫還原系統去合金熱處理
外文關鍵詞:PdAuNi catalystsethanol oxidation reaction (EOR)alkaline solutionlong-term stabilityX-ray absorption spectroscopy (XAS)temperature-programmed reduction (TPR)dealloyingheat-treatment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:230
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
本研究系統性的探討鈀觸媒(Pd/C)藉由金和鎳的添加,所形成二元和三元(Pd3Au/C, Pd3Ni/C和Pd3AuNi/C)觸媒之鹼性環境下乙醇氧化反應。所製備觸媒的金屬含量、乙醇氧化活性、結構、形貌、表面組成和表面物種可由熱重分析儀和感應耦合電漿原子發射光譜分析儀、循環伏安法、X光繞射分析儀和X光吸收能譜儀、高解析穿透式電子顯微鏡、X光電子能譜儀和程溫還原系統分析。
觸媒表面以氫氧化氧物形式所存在的鎳可以因雙功能機制(bi-functional mechanism)和溢流效應(spillover effect)來促進鈀觸媒之乙醇氧化反應的進行,而觸媒中的金可修飾鈀的晶格和電子結構以促進乙醇分子的吸附。根據常溫下計時伏安法的結果,鈀金鎳觸媒在四小時乙醇氧化反應後的質量電流密度為鈀和鈀金觸媒之1.39和1.10倍,此鈀金鎳觸媒穩定性的提升乃歸因於金和鎳的合金化增益效應。
為了進一步增進鈀金鎳觸媒的乙醇氧化能力,以電化學去合金法(dealloying)和熱處理法改質。鈀金鎳觸媒在去合金化、一氧化碳和氧氣熱處理後的乙醇氧化能力下降。而在560 K氫氣熱處理或還原後的鈀金鎳觸媒,在兩小時乙醇氧化反應後,其質量電流密度各為鈀金鎳觸媒的1.16和1.41倍,此乃歸因於表面鈀的含量和表面金屬態鈀的增加。因此適當的表面組成和表面金屬態對於提升鈀金鎳觸媒的穩定性為一非常重要的因素。

The effect of Au and/or Ni addition on the ethanol oxidation reaction (EOR) performance in alkaline media of Pd based binary and ternary catalysts (Pd3Au/C, Pd3Ni/C, and Pd3AuNi/C) is systematically elucidated. The metal loading, EOR activities, structures, morphologies, surface compositions and surface species of the prepared catalysts are analyzed by the thermal gravimetric analysis (TGA) and inductively coupled plasma-atomic emission spectrometer (ICP-AES), cyclic voltammetry (CV), X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and temperature-programmed reduction (TPR), respectively.
It is observed that the surface Ni with the chemical state of NiOOH can promote the EOR through bi-functional mechanism and spillover effect while surface Au can modify the Pd lattice and electron configuration which is helpful for the absorption of ethanol molecular. Chronoamperometric (CA) results obtained at room temperature demonstrate that the mass current density of ternary Pd3AuNi/C catalysts after the long-term EOR test for 4 h is about 1.39 and 1.10 times higher than that of the monometallic Pd/C and binary Pd3Au/C catalysts, respectively. It is proposed that the enhancement in EOR stability of Pd3AuNi can be attributed to the synergistic effect of Ni and Au alloying.
The Pd3AuNi catalysts are then further modified by electrochemical dealloying or heat treatment processes in order to promote their EOR performance. The dealloying process or heat treatment at CO or O2 do not have positive effect on the EOR activity of the Pd3AuNi catalysts. For the Pd3AuNi catalysts heat-treated and reduced in H2 at 560 K, after CA test of 2 hours, the mass current density is about 1.16 and 1.41 times higher than that of the as-prepared Pd3AuNi catalysts. This result is attributed to the increase in surface Pd content and metallic states after the heat treatment or reduction in H2 at 560 K. Therefore, the proper surface composition and chemical states are essential for the improvement in the stability of Pd3AuNi catalysts.

摘要 i
Abstract iii
誌謝 v
Table of Contents vii
List of Figures x
List of Tables xii
Chapter I Introduction 1
1.1 The EOR Mechanism of Pd in Alkaline Solution 2
1.2 Catalysts for EOR in Alkaline Media 7
1.3 The Effect of Reducing Temperature and Heat Treatment 14
1.4 The Effect of Dealloying Process 16
1.5 Motivation and Approach 17
Chapter II Experimental Section 18
2.1 Preparation of Pd3AuNi/C Catalysts 18
2.2 Modification of Pd3AuNi Catalysts 21
2.2.1 Heat treatment of the catalysts 21
2.2.2 Electrochemical dealloying treatment 21
2.3 Characterization of Catalysts 23
2.3.1 Inductively coupled plasma-atomic emission spectrometer (ICP-AES) 23
2.3.2 Thermal gravimetric analysis (TGA) 23
2.3.3 X-ray diffraction (XRD) 23
2.3.4 High resolution transmission electron microscope (HRTEM) 23
2.3.5 Temperature programmed reduction (TPR) 25
2.3.6 X-ray photoelectron spectroscopy (XPS) 25
2.3.7 X-ray absorption spectroscopy (XAS) 25
2.3.8 Electrochemical measurements 27
Chapter III Results and Discussion 29
3.1 The Structure-Activity Relationship of the Pd, Pd3Au, Pd3Ni and Pd3AuNi Catalysts 30
3.1.1 ICP and TGA characterization 30
3.1.2 HRTEM characterization 30
3.1.3 XRD characterization 35
3.1.4 XAS characterization 37
3.1.5 XPS characterization 37
3.1.6 TPR characterization 42
3.1.7 EOR activity 44
3.1.8 CA test 48
3.1.9 Summary 54
3.2 The Effect of Dealloying Process on the Electrochemical Performance of Pd3AuNi Catalysts 57
3.3 The Effect of Heat Treatment on the Electrochemical Performance of Pd3AuNi catalysts 59
3.3.1 The stability of Pd3AuNi after heat treated at different atmospheres 59
3.3.2 XRD characterization of Pd3AuNi reduced and treated at 560 K in H2 59
3.3.3 XPS characterization of Pd3AuNi reduced and treated at 560 K in H2 62
3.3.4 CA test of Pd3AuNi reduced and treated at different temperatures in H2 62
3.3.5 Summary 65
Chapter IV Conclusions 67
References 68

[1] H. Li, G. Suna, L. Cao, L. Jiang, Q. Xin, Electrochim. Acta 52 (2007) 6622.
[2] J. Zhang, P. K. Shen, 1st ed. Springer (2008).
[3] A. E. Farrell, R. J. Plevin, B. T. Turner, A. D. Jones, M. O’Hare, D. M. Kammen, Science 311 (2006) 506.
[4] A. Ermete, J. Power Sources 170 (2007) 1.
[5] F. Hu, C. Chen, Z. Wang, G. Wei, P. K. Shen, Electrochim. Acta 52 (2006) 1087.
[6] S. Y. Shen, T. S. Zhao, J. B. Xu, Y. S. Li, J. Power Sources 195 (2010) 1001.
[7] E. Antolini, E. R. Gonzalez, J. Power Sources 195 (2010) 3431.
[8] A. V. Tripkovic, K. D. Popovic, B. N. Grgur, B. Blizanac, P. N. Ross, N. M. Markovic, Electrochim. Acta 47 (2002) 3707.
[9] Z. X. Liang, T. S. Zhao, J. B. Xu, L. D. Zhu, Electrochim. Acta 54 (2009) 2203.
[10] J. Liu, J. Ye, C. Xu, S. P. Jiang, Y. Tong, Electrochem. Commun. 9 (2007) 2334.
[11] Z. Zhang, L. Xin, K. Sun, W. Li, Int. J. Hydrogen Energy 36 (2011) 12686.
[12] Z. Y. Zhou, Q. Wang, J. L. Lin, N. Tian, S. G. Sun, Electrochim. Acta 55 (2010) 7995.
[13] L. Wang, V. Bambagioni, M. Bevilacqua, C. Bianchini, J. Filippi, A. Lavacchi, J. Power Sources 195 (2010) 8036.
[14] R. Mancharan, J. B. Goodenough, J. Mater. Chem. 2 (1992) 875.
[15] F. Cheng, X. Daia, H. Wang, S. P. Jiang, M. Zhang, C. Xu, Electrochim. Acta 55 (2010) 2295.
[16] J. Huang, Z. Liu, C. He, L. M. Gan, J. Phys. Chem. B 109 (2005) 16644.
[17] P. K. Shen, C. Xu, Electrochem. Commun. 8 (2006) 184.
[18] G. Cui, S. Song, P. K. Shen, A. Kowal, C. Bianchini, J. Phys. Chem. C 113 (2009) 15639.
[19] C. Xu, L. Cheng, P. Shen, Y. Liu, Electrochem. Commun. 9 (2007) 997.
[20] Q. He, W. Chen, S. Mukerjeea, S. Chenb, F. Laufek, J. Power Sources 187 (2009) 298.
[21] F. Grain, Catal. Today 89 (2004) 255.
[22] A. Ruban, B. Hammer, P. Stoltze, H. L. Skriver, J. K. Norskov, J. Mol. Catal. A: Chem. 115 (1997) 421.
[23] J. Greeley, J. K. Norskov, M. Mavrikakis, Annu. Rev. Phys. Chem. 53 (2002) 319.
[24] Y. Wang, T. S. Nguyen, X. Liu, X. Wang, J. Power Sources 195 (2010) 2619.
[25] U. B. Demirci, J. Power Sources 173 (2007) 11.
[26] Z. Qi, H. Geng, X. Wang, C. Zhao, H. Ji, C. Zhanga, J. Xu, Z. Zhanga, J. Power Source 196 (2011) 5823.
[27] V. Bambagioni, M. Innocenti, ChemSusChem 2 (2009) 99.
[28] Y. C. Wei, C. W. Liu, W. D. Kang, C. M. Lai, L. D. Tsai, K. W. Wang, J. Electroanal. Chem. 660 (2011) 64.
[29] J. B. Xu, T. S. Zhao, S. Y. Shen, Y. S. Li, Int. J. Hydrogen Energy 35 (2010) 6490.
[30] N. Du, H. Zhang, X. Ma, D. Yang, Chem. Commun. (2008) 6182.
[31] K. A. Assiongbon, D. Roy, Surf. Sci. 594 (2005) 99.
[32] Z. Wu, S. Zhou, H. Zhu, S. Dai , S. H. Overbury, Chem. Commun. 29 (2008) 3308.
[33] Z. Liu, B. Zhao, C. Guo, Y. Sun, F. Xu, H. Yang, J. Phys. Chem. C 113 (2009) 16766.
[34] K. Faycal, R. Laurence, K. Bineta, N. Louis, B. Patricia, R. Hynd, Chem. Mater. 21 (2009) 3677.
[35] L. D. Zhu, T. S. Zhao, J. B. Xu, Z. X. Liang, J. Power Sources 187 (2009) 80.
[36] C. W. Liu, Y. W. Chang, Y. C. Wei, K. W. Wang, Electrochim. Acta 56 (2011) 2574.
[37] F. Colmati, A. Ermete, E. R. Gonzalez, Appl. Catal. B Environ 73 (2007) 106.
[38] D. Jayati, D. Abhijit, M. Sanjeev, J. Phys. Chem. C 115 (2011) 15324.
[39] X. Wang, N. Kariuki, J. T. Vaughey, J. Goodpaster, R. Kumar, D. J. Myers, J. Electrochem. Soc. 155 (2008) 602.
[40] K. W. Wang, S. Y. Huang, C. T. Yeh, J. Phys. Chem. C 111 (2007) 5096.
[41] S. Y. Huang ,S. M. Chang ,C. L. Lin, C. H. Chen, C. T. Yeh, J. Phys. Chem. B 110 (2006) 23300.
[42] D. B. Kim, H. J. Chun, Y. K. Lee, H. H. Kwon, H. I. Lee, Int. J. Hydrogen Energy 35 (2010) 313.
[43] X. Li, I. M. Hsing. Electrochim. Acta 52 (2006) 1358.
[44] C. W. Liu , Y. C. Wei, K. W. Wang, Chem. Commun. 46 (2010) 2483.
[45] B. J. Hwang, L. S. Sarma, G. R. Wang, C. H. Chen, D. G. Liu, H. S. Sheu, J. F. Lee, Chem. Eur. J. 13 (2007) 6255.
[46] N. Tsiouvaras, M. V. Martínez-Huerta, O. Paschos, U. Stimming, J. L. G. Fierro, M. A. Peña, J. Hydrogen Energy (35) 2010 11478.
[47] S. Koh, P. Strasser, J. Am. Chem. Soc. 129 (2007) 12624.
[48] S. I. Zabinsky, J. J. Rehr, A. Ankudinov, R. C. Albers, M. J. Eller, Phys. Rev. B 52 (1995) 2995.
[49] Y. C. Wei, T. Y. Chen, C. W. Liu, T. S. Chan, J. F. Lee, C. H. Lee, Catal. Sci. Technol. 2 (2012) 1654.
[50] K. W. Wang, S. R. Chung, C. W. Liu, J. Phys. Chem. C 112 (2008) 10242.
[51] J. F. Watts, J. Wolstenholme, 2nd ed. Wiley (2003).
[52] Y. Gauthier, R. Baudoing-Savois, J. M. Bugnard, W. Hebenstreit, M. Schmid, P. Varga, Surf. Sci. 446 (2000) 155.
[53] P. Wynblatt, A. Landa, Comput. Mater. Sci. 15 (1999) 250.
[54] Y. C. Wei, C. W. Liu, H. W. Lee, S. R. Chung, S. L. Lee, T. S. Chan, Int. J. Hydrogen Energy 36 (2011) 3789.
[55] K. W. Wang, C. T. Yeh, J. Colloid Interface Sci. 325 (2008) 203.
[56] Y. C. Wei, C. W. Liu, K. W. Wang, Chem. Commun. 47 (2011) 11927.
[57] R. V. Wandekar, M. Ali, B. N. Wani, S. R. Bharadwaj, Mater. Chem. Phys. 99 (2006) 289.
[58] V. Bambagioni, C. Bianchini, Y. Chen, J. Filippi, P. Fornasiero, M. Innocenti, ChemSusChem 5 (2012) 1266.
[59] C. Xu, P. K. Shen, Y. Liu, J. Power Sources 164 (2007) 527.
[60] S. Q. Song, W. J. Zhou, Z. H. Zhou, L. H. Jiang, G. Q. Sun, Q. Xin, V. Leontidis, Int. J. Hydrogen Energy 30 (2005) 995.
[61] S. Kontou, P. TsiakarasY. Suo, I. M. Hsing. J. Power Sources 196 (2010) 7945.
[62] X. Wang, W. Wang, Z. Qi, C. Zhao, H. Ji, C. Zhang, J. Xu, Z. Zhang, Electrochem. Commun. 11 (2009) 1896.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top