(3.231.230.175) 您好!臺灣時間:2021/04/16 02:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃俞翔
研究生(外文):Yu-hsiang Huang
論文名稱:結合交易點預測之動態投資組合管理系統
論文名稱(外文):Dynamic Portfolio Management with Trading Signal Prediction
指導教授:張嘉惠張嘉惠引用關係
指導教授(外文):Chia-Hui Chang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:33
中文關鍵詞:投資組合交易訊號預測
外文關鍵詞:portfolio managementtrading signal prediction
相關次數:
  • 被引用被引用:3
  • 點閱點閱:578
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:48
  • 收藏至我的研究室書目清單書目收藏:1
投資組合管理系統旨為將有限的資金,在眾多投資標的中,做有效的配置,並賺取更多的報酬,其獲利的兩大關鍵,在於進出場時機判斷及資產的配置。過去大部分研究皆針對特定的功能,如交易訊號的預測、資產的配置、投資目標的設定。然而實際投資時,需要這些功能同時運作,並相互合作,才能真正獲利,因此本研究結合Trading signal prediction[9]、Time Invariant Portfolio Protection[9]、Optimal Dynamic Asset Allocation[20],形成一投資組合管理系統。我們以固定明確的期望報酬作為投資目標,每次重新配置時,以最可能達到目標報酬的方式選擇投資標的;投資過程中並結合資產配置機制,使投資組合在資產有效運用下,兼具資產保護的特性。我們藉由轉折點切割股價,利用後傳遞類神經網路學習並預測交易訊號,作為進出場時機點判斷及投資項篩選。同時本研究針對交易訊號轉化方式,提出新的計算方法,以解決原方法中在實用時會遭遇到的最佳化問題。實驗結果顯示,本研究提出的交易訊號轉化方式,解決原方法在實作時所需參數調整的問題,又能取得與原方法參數最佳化後相似的投資效果;另外實驗證明本研究之投資組合管理系統,在市場下跌時,利用資產保護機制,可減少投資組合資產的損失,但也可能造成市場上升時,投資組合獲利不及市場。為解決固定報酬目標對於獲利的限制,當投資組合達到階段性投資目標時,系統將設定新一輪的投資目標,持續投資以克服市場上升時獲利不佳的情況。實驗顯示,此項措施在長期投資中,藉由設定適當的報酬率,可達到更高的投資報酬。
The goal of portfolio management is to allocate the limited money into multiple securities effectively to earn more money. The two key factors of obtaining high profit are “the trading time” and “asset allocation”. Most of the past researches focus on one specific problem, for example, trading signal prediction, asset allocation, adaptive investment goal setting etc. But in real investment, investors need solutions for all these problems to achieve investment goal. This research combines trading signal prediction [9], Time Invariant Portfolio Protection [10], Optimal Dynamic Asset Allocation [20] into a portfolio management system. In the first part, we use turning points to partition the stock price, and use Back-propagation neural network (BPNN) to learn and predict the trading signal for each stock. We propose a new way to calculate the trading signal to avoid parameter tuning required in [9]. The second part is asset allocation. With asset protection mechanism (TIPP), we set an explicit ROI as the investment goal. We then allocate money for investment target for their probability to reach the investment goal in each rebalance. The experiment shows that the new way to calculate trading signal has similar performance with the original method but avoids the parameter tuning problem. Furthermore, with asset protection mechanism, our portfolio management system would receive less damage in encountering bear market. However, the fixed investment return goal would limit the profit in bull market. Therefore, we start a new round when the portfolio reaches the investment goal, and successfully makes the portfolio management system conquer the problem in bull market. For long-term investment, this mechanism could get better performance by setting appropriate return rate.
中文摘要 I
Abstract II
目錄 III
圖目錄 IV
表目錄 V
一、緒論 1
二、相關研究 3
2.1 投資策略 3
2.2 資產配置─ 4
2.3 交易訊號的預測─ 5
三、研究方法 8
3.1 投資風險與資金管控─ 8
3.2 交易訊號處理及預測─ 9
3.3 投資組合配置 12
3.3.1 進場之程序 12
3.3.2出場之程序─ 14
四、實驗 16
4-1 實驗投資標的之選擇 16
4-2技術指標之選擇 17
4-3不同交易訊號轉化方式投資結果 18
4-4不同市場表現下,投資組合投資結果 19
4-5不同市場表現下,達目標報酬後持續投資之投資結果 20
4-6不同投資時間長度下,投資組合投資結果 23
4-7長期投資下,投資組合投資結果與資產總值變化 25
4-8長期投資下,投資組合在不同目標報酬之資產總值變化 28
五、結論與未來展望 31


[1] V. Acharyaa and L. Pedersen, “Asset pricing with liquidity risk,” J.Financ. Econ., vol. 77, no. 2, pp. 375–410, 2005.
[2] D. Bertsekas, Dynamic Programming and Optimal Control. Belmont,MA : Athena Scientific, 2001.
[3] F. Black and M. Scholes “The pricing of options and corporate liabilities”The Journal of Political Economy 1973
[4] F. Black, A. F. Perold, “Theory of constant proportion portfolio insurance”, JEDC, vol. 16, 1992
[5] M. Brandt, “Estimating portfolio and consumption choice: A conditional Euler equations approach,” J. Finance, vol. 54, no. 5, pp.1609–1645, 1999.
[6] J. Campbell and L. Viceira, “Consumption and portfolio decisions when expected returns are time varying,” Q. J. Econ., vol. 114, no. 2, pp. 433–495, 1999.
[7] J. Campbell, K. De Medeiros, and L. Viceira, “Global currency hedging,” J. Finance, vol. 65, no. 1, pp. 87–121, 2010.
[8] J. Campbell and M. Viceira, Strategic Asset Allocation: Portfolio Choice for Long-Term Investors. London , U.K.: Oxford Univ. Press,2002.
[9] P. C. Chang, C. Y. Fan and C. H. Liu, “Integrating a Piecewise Linear Representation Method and a Neural Network Model for Stock Trading Points Prediction”, IEEE TSMCC, vol. 39, No. 1, 2009
[10] T. Estep , M. Kritzman, “TIPP : Insurance without complexity”, The Journal of Portfolio Management, vol 14, 1988
[11] A. F. Perold, W. F. Sharpe, “Dynamic Strategies for Asset Allocation”, Financial Analysis Journal 1995
[12] E. Fama, “Multiperiod consumption-investment decisions,” Amer.Econ. Rev. , vol.60, pp.163–174, 1970.
[13] F D. Freitas, "Prediction-based portfolio optimization model using neural networks." Neurocomputing 72.10 (2009): 2155-2170.
[14] Y Fang, K K Lai, “Portfolio rebalancing model with transaction costs based on fuzzy decision theory”, European Journal of Operational Research, 2006
[15] J. W. Lee, J. Park, “A Multi-agent Approach to Q-Learning for Daily Stock Trading”, IEEE TSMCA, vol. 37, No. 6, 2007
[16] M C Lee, “Using support vector machine with a hybrid feature selection method to the stock trend prediction”, Expert System with Application, vol. 36, 2009
[17] H. Markowitz, “Portfolio selection”, J Finance, vol 7, 1952
[18] R. Merton, “Lifetime portfolio selection under uncertainty: The continuous-time case,” Rev. Econ. Statist., vol. 51, no. 3, pp. 247 –257, 1969.
[19] E. I. RONN, A. K. VERMA, “Pricing Risk-Adjusted Deposit Insurance: An Option-Based Model”, The Journal of Finance, vol. 14, 1986
[20] G. Pola, “A Stochastic Reachability Approach to Portfolio Construction in Finance Industry”, IEEE TCST 2010
[21] M Rubinstein, HE Leland, “Replicating options with positions in stock and cash”, Financial Analysts Journal, 1981
[22] P. Samuelson, “Lifetime portfolio selection by dynamic stochastic programming,” Rev. Econ. Statist., vol. 51, no. 3, pp. 239–246 , 1969.
[23] I. Tahar, H. Soner, and N. Touzi, “The dynamic programming equationfor the problem of optimal investment under capital gains taxes ,” SIAMJ. Control Optim., vol. 46, no. 5, pp. 1779–1801, 2007.
[24] H. Wu, B. Salzberg, and D. Zhang, “Online event-driven subsequence matching over financial data streams”, SIGMOD 2004

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔