(100.26.179.251) 您好!臺灣時間:2021/04/12 21:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:郭凱威
研究生(外文):Kai-Wei Kuo
論文名稱:基於微觀與巨觀方法之預測車流旅行時間研究
論文名稱(外文):A Hybrid Travel-Time Prediction Approach Based on Macroscopic and Microscopic Methodologies
指導教授:周立德周立德引用關係
指導教授(外文):Li-Der Chou
學位類別:碩士
校院名稱:國立中央大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:135
中文關鍵詞:旅行時間預測卡爾曼濾波支援向量機車載網路
外文關鍵詞:travel time predictionKalman FilterSupport Vector MachineVANET
相關次數:
  • 被引用被引用:0
  • 點閱點閱:304
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來旅行時間預測成為智慧化運輸系統(Intelligent Transportation System,ITS)重要的議題,根據國際汽車組織(Organisation Internationale des Constructeurs d'Automobiles,OICA)的統計,全球的車輛不斷的增加,至西元2012年為止全球車輛已達到八千萬輛。而根據中華民國交通部(Ministry Of Transportation and Communications R.O.C.)統計指出,至西元2012年為止,台灣的國道使用率每年有五萬七千萬輛台小客車使用國道。增加的車輛數以及增加的道路使用率會間接地造成車輛壅塞,而在車輛壅塞的情況下駕駛者若因為搶快或者對於周遭環境不熟就很有可能造成車禍事故的發生。為了避免事故的發生以及保障用路人生命安全,精準的預測車流旅行時間可以讓用路者明確的瞭解道路的環境,進而避免自己陷入車輛壅塞的環境之中。傳統的旅行時間預測主要有兩種方法,第一種利用車內裝置定期的將車輛現在的資訊傳回中控中心,這種方法的缺點在於車載網路瞬息萬變,過度依賴全球定位系統(Global Position System,GPS)除了有可能面臨到通訊中斷而使得資料丟失,也有可能會因為GPS延遲使得中控中心取得不正確的資料;第二種是使用路側設施所獲取的車流資料,但是這種方法很容易因設施毀損以及通訊中斷導致中控中心無法取得正確的資料。為了精準的預測車流旅行時間,本論文提出了混合式之車流旅行時間預測方法HPAM (Hybrid Travel-Time Prediction Approach Based on Macroscopic and Microscopic Methodologies),利用卡爾曼濾波考慮環境噪音的影響並且能夠快速的修正中控中心遺失的資料,並且利用支援向量機的方法考慮了車流資訊以及空氣汙染的影響,進而精準的預測車流旅行時間。利用本論所提出的HPAM機制,在高速公路環境下可以減少9.86%至54.40%的預測誤差,而在一般道路環境下可以減少9.75%至72.80%的預測誤差,因此本論文所提出的HPAM機制能夠有效的減少車流旅行時間預測誤差。
Recently, travel time prediction approaches have become an important issue in intelligent transportation systems. According to the Organisation Internationale des Constructeurs d’Automogiles , the amount of global vehicles is over than eight hundred millions in 2012. According to the Ministry Of Transportation and Communications R.O.C., the usage rate of Taiwan freeway is more than 5.7 billion vehicles in 2012. Increment of vehicles and freeway usage rate indirectly conducts traffic jams, and traffic jams might conducts accidents. In order to avoid the car accident and keep people safe, accurately predict travel time let users to know the road situation clearly. There are two methods of traditional travel time prediction. First, vehicles use on board unit or global position system to deliver their information to control center. This method has a critical disappoint like control center will lose data due to communication lose or transmit latency. Second, using vehicle detectors to retrieve vehicle information and then transmit to control center. This method also faced same problem like first method. In order to predict travel time more accurately, this thesis propose a Hybrid Travel-Time Prediction Approach Based on Macroscopic and Microscopic Methodologies (HPAM) , using Kalman Filter to recover the loss data quickly and then using Support Vector Machine to predict travel time. In this thesis, HPAM can reduce 9.86% to 54.40% prediction error in freeway situation, and reduce 9.75% to 72.80% prediction error in urban situation. The mechanism HPAM can accurately predict travel time.
摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 x
第 1 章 緒論 1
1.1 概要 1
1.2 研究動機與目標 6
1.3 論文架構 7
第 2 章 背景知識與相關研究 8
2.1 卡爾曼濾波器 8
2.2 支援向量機 15
2.3 各項機器學習之車流預測模型與時間序列 25
2.4 旅行時間、空氣汙染資料與車載網路 31
2.5 相關文獻比較 36
第 3 章 系統架構與設計 39
3.1 研究模型與假設 39
3.2 系統架構示意圖與模組介紹 40
3.3 系統流程說明 46
3.3.1 資料擷取與資料處理子系統 47
3.3.2 Microscopic Two-Dimensional Kalman Filter 模組與子系統 54
3.3.3 Macroscopic Support Vector Machine 模組與子系統 61
第 4 章 實驗討論 71
4.1 實驗環境與評量指標 71
4.2 實驗一:基於高速公路環境之車流模型分析 72
4.3 實驗二:使用KF於高速公路環境固定與動態時序預測比較 76
4.4 實驗三:使用KF基於高速公路環境UKF與TDKF之比較 84
4.5 實驗四:基於一般道路環境之車流模型分析 88
4.6 實驗五:使用KF基於一般道路環境UKF與TDKF之比較 91
4.7 實驗六:旅行時間與空氣汙染資料之相關係數討論 95
4.8 實驗七:空氣汙染資料在高與低相關係數對於預測影響之討論 101
4.9 實驗八:HPAM基於高速公路環境中預測與Hybrid方法比較 104
4.10 實驗九:使用KF以平日之車流資訊預測假日車流資訊之比較 107
4.11 實驗十:使用KF以平日之車流資訊預測假日車流資訊之比較(一個月歷史資料) 109
4.12 實驗十一:以三週歷史資料預測未來一週之數據 111
第 5 章 結論與未來工作 114
5.1 結論 114
5.2 研究限制 114
5.3 未來發展工作 115
參考文獻 116

[1] OrganisationInternationale des Constructeursd'Automobiles (OICA), [Online]. Available: http://www.oica.net/
[2] Ministry Of Transportation and Communications R.O.C. (MOTC), [Online]. Available: http://www.motc.gov.tw/
[3] Taiwan Area National Freeway Bureau (TANFB), [Online]. Available: http://www.freeway.gov.tw/
[4] J. A. Fernandez, K. Borries, L. Cheng, B. V. K. V. Kumar, D. D. Stancil, and F. Bai, “Performance of the 802.11p Physical Layer in Vehicle-to-Vehicle Environments,” IEEE Transactions on Vehicular Technology, vol. 61, no. 1, pp. 3–14, Jan, 2012.
[5] David C.-H. Li, L.-D. Chou, K.-W. Kuo, “An Intelligent Traffic Density Aware Routing Protocol in Vehicular Ad Hoc Networks,” Proceedings of the 8th Workshop on Wireless, Ad Hoc and Sensor Networks (Excellent Paper Award), Taipei, Taiwan, Aug, 2012.
[6] L.-D. Chou, David C.-H. Li, B.-T. Deng, K.-W. Kuo, “A Passenger-based Adaptive Traffic Signal Control Mechanism in Intelligent Transportation Systems,” Proceedings of the ITS Telecommunications, Taipei, Taiwan, pp. 408-411, Nov, 2012.
[7] L.-D. Chou, D.-Y. Huang, “Using Carbon-Oriented Architecture to Build Green Cloud,” Advanced Science Letters, vol. 13, no. 1, pp. 651-653, Jun, 2012.
[8] Climate Change & CO2, [Online]. Available: http://oica.net/category/ climate-change-and-co2/
[9] F. Knorr, D. Baselt, M. Schreckenberg, and M. Mauve, “Reducing Traffic Jams via VANETs,” IEEE Transactions on Vehicular Technology, vol. 61, no. 8, pp. 3490–3498, Oct, 2012.
[10] A. Simroth and H. Zähle, “Travel Time Prediction Using Floating Car Data Applied to Logistics Planning,” IEEE Transactions on Intelligent Transportation Systems, vol. 12, no. 1, pp. 243–253, Feb, 2011.
[11] C.-C. Huang-Fu and Y.-B. Lin, “Deriving Vehicle Speeds From Standard Statistics of Mobile Telecom Switches,” IEEE Transactions on Vehicular Technology, vol. 61, no. 7, pp. 3337–3341, March, 2012.
[12] J. Park, D. Li, Y. L. Murphey, J. Kristinsson, R. McGee, M. Kuang, and T. Phillips, “Real time vehicle speed prediction using a Neural Network Traffic Model,” Proceedings of the 2011 International Joint Conference on Neural Networks (IJCNN), San Jose, CA, pp. 2991–2996, July, 2011.
[13] Environmental Protection Agency (EPA), [Online]. Available: http://www.epa.gov
[14] F. Nejadkoorki and S. Baroutian, “Forecasting Extreme PM10 Concentrations Using Artificial Neural Networks,” Int. J. Environ. Res, vol. 6, no. 1, pp. 277–284, July, 2012.
[15] H. Ji, A. Xu, X. Sui, and L. Li, “The applied research of Kalman in the dynamic travel time prediction,” Proceeding of the 2010 18th International Conference on Geoinformatics, Beijing , China, pp. 1–5, June, 2010.
[16] X. Liu, S. I. Chien, and M. Chen, “An adaptive model for highway travel time prediction,” Journal of Advanced Transportation, 2012.
[17] R.-M. Hage, D. Betaille, F. Peyret, D. Meizel, and J. Smal, “Unscented Kalman filter for urban link travel time estimation with mid-link sinks and sources,” Proceddings of the 2012 15th International IEEE Conference on Intelligent Transportation Systems (ITSC), Anchorage, AK , pp. 1632–1637, Nov, 2012.
[18] B. Yu, Z.-Z. Yang, K. Chen, and B. Yu, “Hybrid model for prediction of bus arrival times at next station,” Journal of Advanced Transportation, vol. 44, no. 3, pp. 193–204, Dec, 2010.
[19] X. CHEN, H. GONG, and J. Wang, “BRT Vehicle Travel Time Prediction Based on SVM and Kalman Filter,” Journal of Transportation Systems Engineering and Information Technology, vol. 12, no. 4, pp. 29–34, Aug, 2012.
[20] H. Suzuki and T. Nakatsuji, “Neural Kalman filter for estimating dynamic velocity and headway distance in vehicle platoon system,” Proceedings of the 2012 IEEE International Conference on Systems, Man, Cybernetics (SMC), Seoul, Korea, pp. 559–564, Oct, 2012.
[21] C. P. I. J. van Hinsbergen, T. Schreiter, F. S. Zuurbier, J. W. C. Van Lint, and H. J. Van Zuylen, “Fast traffic state estimation with the localized Extended Kalman Filter,” Proceedings of the 2010 13th International IEEE Conference on Intelligent Transportation Systems (ITSC), Funchal, Autonomous Region of Madeira, pp. 917–922, Sept, 2010.
[22] N. Wisitpongphan, W. Jitsakul, and D. Jieamumporn, “Travel Time Prediction Using Multi-layer Feed Forward Artificial Neural Network,” Proceedings of the 2012 Fourth International Conference on Computational Intelligence, Communication Systems and Networks (CICSyN), Phuket, Thailand, pp. 326 –330, July, 2012.
[23] Thissen, U., Brakel, R. V., Weijer, A. P. D., Melssen, W. J. and Buydens L. M. C. “Using support vector machines for time series prediction,” Journal of Chemometrics and Intelligent Laboratory Systems, vol. no. 1, pp.35–49, May, 2003.
[24] C.-C. Chang and C.-J. Lin, “LIBSVM: a library for support vector machines,” ACM Transactions on Intelligent Systems and Technology (TIST), vol. 2, no. 3, pp. 27, Nov, 2011.
[25] P. V. V. K. Theja and L. Vanajakshi, “Short Term Prediction of Traffic Parameters Using Support Vector Machines Technique,” Proceedings of the 2010 3rd International Conference on Emerging Trends in Engineering and Technology (ICETET), Goa, India, pp. 70–75, Nov, 2010.
[26] Y. Chen, H. J. Van Zuylen, and Y. Qipeng, “Travel time prediction on urban networks based on combining rough set with support vector machine,” Proceeding of the 2010 International Conference on Logistics Systems and Intelligent Management, Harbin, China, pp. 586–589, Jan, 2010.
[27] X. CHEN, H. GONG, and J. Wang, “BRT Vehicle Travel Time Prediction Based on SVM and Kalman Filter,” Journal of Transportation Systems Engineering and Information Technology, vol. 12, no. 4, pp. 29–34, Aug. 2012.
[28] T. Wu, K. Xie, G. Song, and C. Hu, “A Multiple SVR Approach with Time Lags for Traffic Flow Prediction,” Proceeding of the 11th International IEEE Conference on Intelligent Transportation Systems, Beijing, China, pp. 228–233, Oct, 2008.
[29] L. Vanajakshi and L. R. Rilett, “Support vector machine technique for the short term prediction of travel time,” Proceedings of the 2007 IEEE Intelligent Vehicles Symposium , Istanbul, Turkey, pp. 600–605, June, 2007.
[30] B. YU, Z. YANG, and J. LIN, “Bus Arrival Time Prediction Using Support Vector Machines,” Systems Engineering-Theory & Practice, vol. 10, no. 4, pp. 151-158, Sept, 2007.
[31] C.-T. Lin, L.-D. Chou, “A Novel Economy Reflecting Short-Term Load Forecasting Approach,” Energy Conversion and Management, vol. 65, pp. 331-342, Jan, 2013.
[32] Bogdan M. Wilamowski, H. Yu, K. T. Chung, “Parity-N problems as a vehicle to compare efficiency of neural network architectures,” Industrial Electronics Handbook, vol. 5 – INTELLIGENT SYSTEMS, 2nd Edition, chapter 10, pp. 10-1 to 10-8, CRC Press, 2010.
[33] N. Wisitpongphan, W. Jitsakul, and D. Jieamumporn, “Travel Time Prediction Using Multi-layer Feed Forward Artificial Neural Network,” Proceedings of the 2012 Fourth International Conference on Computational Intelligence, Communication Systems and Networks (CICSyN), Phuket, Thailand, pp. 326 –330, July, 2012.
[34] K. Y. Chan, T. Dillon, E. Chang, and J. Singh, “Prediction of Short-Term Traffic Variables Using Intelligent Swarm-Based Neural Networks,” IEEE Transactions on Control Systems Technology, vol. 21, no. 1, pp. 263–274, Jan, 2013.
[35] C. P. I. van Hinsbergen, J. W. van Lint, and H. J. Van Zuylen, “Bayesian training and committees of state-space neural networks for online travel time prediction,” Transportation Research Record: Journal of the Transportation Research Board, vol. 2105, no. 1, pp. 118–126, Oct, 2009.
[36] C. P. I. J. van Hinsbergen, A. Hegyi, J. W. C. van Lint, and H. J. van Zuylen, “Bayesian neural networks for the prediction of stochastic travel times in urban networks,” IET Intelligent Transport Systems, vol. 5, no. 4, pp. 259-265, Dec. 2011.
[37] E. Mazloumi, G. Rose, G. Currie, and S. Moridpour, “Prediction intervals to account for uncertainties in neural network predictions: Methodology and application in bus travel time prediction,” Engineering Applications of Artificial Intelligence, vol. 24, no. 3, pp. 534–542, Apr. 2011.
[38] A. Faghri and J. Hua, “Evaluation of artificial neural network applications in transportation engineering,” Transportation Research Record, no. 1358, July, 1992.
[39] Giovanni H.,and Eric van Berkum, “Short Term Travel Time Prediction Using a Neural Network,” Transportation Research Board, pp. 38-50, Aug, 2000.
[40] Fu Sheng Ho loannou, P. “Traffic flow modeling and control using artificial neural networks.” IEEE Transaction On Control System, vol. 16, no. 5, pp.16-26, Oct, 1996.
[41] H. Dia and G. Rose, “Development and evaluation of neural network freeway incident detection models using field data,” Transportation Research Part C: Emerging Technologies, vol. 5, no. 5, pp. 313-331, Sept, 1997.
[42] J. Y. Wang, K. I. Wong, and Y. Y. Chen, “Short-term travel time estimation and prediction for long freeway corridor using NN and regression,” Proceedings of the 2012 15th International IEEE Conference on Intelligent Transportation Systems (ITSC), Anchorage, Alaska, U.S., pp. 582 -587, Sept, 2012.
[43] J. Y. Wang, K. I. Wong, and Y. Y. Chen, “Short-term travel time estimation and prediction for long freeway corridor using NN and regression,” Proceedings of the 2012 15th International IEEE Conference on Intelligent Transportation Systems (ITSC), Anchorage, Alaska, U.S., pp. 582 –587, Sept, 2012.
[44] T. Liu, J. Ma, W. Guan, Y. Song, and H. Niu, “Bus Arrival Time Prediction Based on the k-Nearest Neighbor Method,” Proceedings of the 2012 Fifth International Joint Conference on Computational Sciences and Optimization (CSO), Harbin, China, pp. 480–483, June, 2012.
[45] J.-S. Yang, “A study of travel time modeling via time series analysis,” Proceedings of 2005 IEEE Conference on Control Applications, Toronto, Canada, pp. 855–860, Aug, 2005.
[46] L. Jin and X. Liang, “Vehicle Management Information System Based on UML,” Proceedings of the 2012 Second International Conference on Business Computing and Global Informatization (BCGIN), Shanghai, China, pp. 789 -792, Oct, 2012.
[47] N. Aliane, J. Fernandez, S. Bemposta, and M. Mata, “Driver behavior monitoring system based on traffic violation,” Proceedings of the 2012 IEEE Intelligent Vehicles Symposium (IV), Alcala de Henares, Spanish, pp. 1096 -1101, June, 2012.
[48] W. Hsu-Su, B. T. Deng, and C. H. Lin, “A distributed collaboration scheme of region detection based on service management of Location Based Services—Take a commercial vehicle operations system as an example,” Proceedings of the 2011 IEEE 13th Network Operations and Management Symposium (APNOMS), Asia-Pacific, Taipei, Taiwan, pp. 1–8, Sept, 2011.
[49] I. M. Almomani, N. Y. Alkhalil, E. M. Ahmad, and R. M. Jodeh, “Ubiquitous GPS vehicle tracking and management system,” Proceedings of the 2011 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT), Amman, Jordan, pp. 1 –6. Dec, 2011.
[50] Z. Sun and J. Sun, “GVMS: A GPS/GSM Based Vehicle Management System for the Army,” Joural of Advances in Mechanical and Electronic Engineering, vol. 176, pp. 509-514, June, 2012.
[51] ITS整合服務-車隊管理一把罩 [Online]. Available: http://t00063.hihosting.hinet.net/ITS
[52] 雲端應用服務-遠傳雲端車隊管理服務 [Online]. Available: http://www.fetnet.net /cs/Satellite/EBU/saasFM
[53] A. Simroth and H. Zähle, “Travel Time Prediction Using Floating Car Data Applied to Logistics Planning,” IEEE Transactions on Intelligent Transportation Systems, vol. 12, no. 1, pp. 243–253, March, 2011.
[54] F. Soriguera and F. Robuste, “Requiem for Freeway Travel Time Estimation Methods Based on Blind Speed Interpolations Between Point Measurements,” IEEE Transactions on Intelligent Transportation Systems, vol. 12, no. 1, pp. 291–297, March, 2011.
[55] L. Shindler, M. Moroni, and A. Cenedese, “Using optical flow equation for particle detection and velocity prediction in particle tracking,” Applied Mathematics and Computation, vol. 218, no. 17, pp. 8684–8694, May, 2012.
[56] CURL PHP tutorial [Online]. Available: http://wiki.dreamhost.com/CURL_PHP_tutorial

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔