(3.229.120.26) 您好!臺灣時間:2021/04/10 22:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:郭沛瑾
研究生(外文):Pei-Chin Guo
論文名稱:外加cusp磁場柴氏法生長單晶矽之熱流場及氧雜質傳輸數值分析
指導教授:陳志臣
指導教授(外文):Jyh-Chen Chen
學位類別:碩士
校院名稱:國立中央大學
系所名稱:能源工程研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:74
中文關鍵詞:單晶矽磁控柴氏長晶法外加cusp磁場氧雜質
外文關鍵詞:Silicon single crystalMagnetic Czochralski crystal growth methodCusp magnetic fieldOxygen impurity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:302
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
單晶矽可用於矽基太陽能電池、半導體積體電路等之基材,單晶矽中氧雜質濃度是主要影響太陽能電池壽命及半導體元件效率的因素之一。傳統柴氏長晶法中,可經由控制晶堝轉、氬氣流速、安裝熱遮罩等方法,來改變熔湯流動型態,而控制氧雜質。由於矽為半導體,以外加磁場之羅倫茲力,亦可影響熔湯流動,而且此方法長成之晶體,氧濃度可低於傳統柴氏長晶法,本研究以數值模擬方法,分析單晶矽在外加cusp磁場作用下,磁場作用於熔湯的機制與原理,並探討生長參數、磁控變因的調整下,熔湯熱場分布及對晶體氧雜質含量的影響,以生成低含氧量單晶矽。
本研究中首先以模擬了解cusp磁場在矽熔湯中的作用方式,磁場與半導體矽作用形成羅倫茲力,熔湯流動受反向之羅倫茲力抑制穩定,氧雜質被抑制於堝壁。接著探討在cusp磁場作用下生長參數改變的影響,流動受晶轉影響小,而堝轉可明顯改變流動,且降氧效果好;改變熱遮罩與熔湯液面距離、熱遮罩形狀及氬氣流率,欲縮小影響氧雜質蒸發率的剪力流,增加液面上方氧化矽的傳輸率,發現剪力流的變動及二次流的生成為影響熔湯流動及質傳的主因,不利於氧雜質的控制。另討論cusp磁場特性零高斯面,本研究的最佳零高斯面位於自由液面下25mm處,此時流動結構受磁場影響,氧雜質分佈達到一最佳狀態。最後探討長晶過程cusp磁場下生長單晶矽晶棒之軸向氧濃度分佈的均勻性,發現以堝轉配合磁場強度作修正可得較均勻之矽晶棒軸向氧濃度分佈。
本研究模擬分析磁控CZ法法單晶矽之生長機制,找出磁控參數對晶體生長的影響及雜質分佈效應,並作生長參數調整控制。外加cusp磁場有助於控制氧雜質濃度,幫助改善磁控法生長矽單晶製程,提升生產良率達到低含氧量單晶矽之目標。

Silicon single crystal is the substrate of silicon based solar cell, semiconductor and so on. The oxygen impurity in the silicon single crystal is the main effect factor for solar cell lifetime and the efficiency of semiconductor devices. In Czochralski silicon crystal growth, it can change flow convection to control oxygen impurity transportation by following ways like crystal/crucible rotation control, argon flowrate and install heat shield. Because silicon is magnetic, the silicon melt flow convection can effect by Lorentz force which produce from additional magnetic. This grown silicon crystal under magnetic field can get lower oxygen concentration than traditional Czochralski method. This thesis use numerical simulation to analysis the mechanism under cusp magnetic field in silicon melt convection of crystal growth. Under the adjust of growth parameter or magnetic factor, we investigate the distribution of thermal, temperature and oxygen impurity to grow lower oxygen concentration content silicon single crystal.
First, through simulation to understand the principle of cusp magnetic field in silicon melt. Magnetic field and magnetic silicon can produce Lorentz force. The flow convection suppressed by counter Lorentz force become stable and restrain oxygen impurity on crucible wall. Second, we investigate the effect of growth parameter under cusp magnetic field. Crucible rotation changes flow pattern obviously than crystal rotation and get lower oxygen concentration. To shrink the stress flow which effects the evaporation of oxygen, we change the gap of heat shield and melt free surface, heat shield shape and argon flowrate, to increase SiO transmission rate where above melt surface. We found stress flow and secondary flow are adverse effects on flow convection and impurity transportation for oxygen impurity control. We also discuss Zero Gauss Plane, a characteristic of cusp magnetic field; the best position in this furnace is under melt surface 25mm. The magnetic influent flow structure makes the oxygen distribution at a best state. Final, discuss the grown silicon single crystal axial oxygen concentration uniformity under cusp magnetic field. We found through adjust of crucible rotation together with magnetic strength can get more homogeneous crystal axial oxygen concentration distribution.
This thesis analysis silicon single crystal growth mechanism under magnetic Czochralski method, find the effects of crystal growth, impurity distribution by magnetron parameter and by the control of growth parameters. Using cusp magnetic field is helpful to control oxygen impurity concentration and improve magnetron method crystal growth process. Magnetic Czochralski method increase the production yield and reach the aim of low oxygen concentration content silicon single crystal.

摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 vii
表目錄 ix
符號說明 x
第一章緒論 1
1-1前言 1
1-2文獻回顧 1
1-2-1柴氏長晶法簡介 1
1-2-2氧雜質 2
1-2-3磁控柴氏長晶法 3
1-2-4外加cusp磁場柴氏長晶法 4
1-3研究動機與目的 7
第二章研究方法 10
2-1物理系統 10
2-2數學模式 11
2-2-1統御方程式 11
2-2-2邊界條件 12
2-2-3紊流計算方式 15
2-3數值方法 16
2-4網格與收斂條件測試 16
第三章結果與討論 24
3-1磁場強度對熱流場及氧雜質之影響 24
3-2晶堝轉對熱流場及氧雜質之影響 26
3-3氬氣流率對流場及氧雜質之影響 27
3-4改變熱遮罩位置、熱遮罩形狀之模擬 28
3-5磁場零高斯面位置最佳化 29
3-6長晶過程cusp磁場對晶棒軸向氧濃度之影響 30
3-6-1固定磁場強度 31
3-6-2隨晶體生長磁場強度線性下降 32
3-6-3固定磁場強度下調整堝轉 33
第四章結論與未來研究方向 52
參考文獻 54

[1] J. Czochralski,“Ein neues Verfahren zur Messung der Kristallisation geschwindigheit der Metalle,”Zeitschrift fur Physikalische Chemie, Vol.92, pp. 219-221, 1918.
[2] G. K. Teal, J. B. Little,“Growth of germanium single crystals,”Physical Review, Vol.78, pp. 647, 1950.
[3] T. Zhang, G.X. Wang, H. Zhang, F. Ladeinde, V. Prasad,“Turbulent transport of oxygen in the Czochralski growth of large silicon crystals,”Journal of Crystal Growth, Vol. 198/199, pp. 141-146, 1999.
[4] I. Kanda, T. Suzuki, K. Kojima,“Influence of crucible and crystal rotation on oxygen-concentration distribution in large-diameter silicon single crystals,”Journal of Crystal Growth, Vol. 166, pp. 669-674, 1996.
[5] Y. Y. Teng, J. C. Chen, W. T. Wun, C. W. Lu, H. I. Chen, K. Hsieh, C. Y. Chen, W. C. Lan,“Numerical simulation of oxygen transport during the CZ silicon crystal growth process,”Journal of Crystal Growth, Vol. 318, pp. 318-323, 2011.
[6] Y. Y. Teng, J. C. Chen, C. C. Huang, C. W. Lu, W. T. Wun, C. Y. Chen,“Numerical investigation n of the effect of heat shield shape on the oxygen impurity distribution at the crystal–melt interface during the process of Czochralski silicon crystal growth,”Journal of Crystal Growth, Vol. 352, pp.167-172, 2012.
[7] S. Kobayashi,“Effects of an external magnetic field on solute distribution in Czochralski grown crystals - a theoretical analysis,”Journal of Crystal Growth, Vol. 104,pp.617-628, 1990.
[8] P. S. Ravishankar, T. T. Braggins, R.N. Thomas, “Impurities in commercial-scale magnetic Czochralski silicon: Axial versus transverse magnetic fields,”Journal of Crystal Growth, Vol. 104, pp.617-628, 1990.
[9] Japan. Patent, Laid-open No. 217493/1983.
[10] H. Hirata, K. Hoshikawa,“Silicon crystal growth in a cusp magnetic field,”Journal of Crystal Growth, Vol. 96, pp. 747-755, 1989.
[11] R. W. Series,“Effect of a shaped magnetic field on Czochralski silicon growth,”Journal of Crystal Growth, Vol. 97, pp. 92-98, 1989.
[12] Y. C. Won, K. Kakimoto, H. Ozoe,“Transient three-dimensional numerical computation for unsteady oxygen concentration in a silicon melt during a Czochralski process under a cusp-shaped magnetic field,”Journal of Crystal Growth, Vol. 233, pp. 622-630, 2001.
[13] D. Vizman, O. Grabner, G. Muller,“3D numerical simulation and experimental investigations of melt flow in an Si Czochralski melt under the influence of a cusp-magnetic field,”Journal of Crystal Growth, Vol.236, pp. 545-550, 2002.
[14] K. Hoshikawa, X. Huang,“Oxygen transport during Czochralski silicon crystal growth,”Materials Science and Engineering B, Vol. 72, pp. 73-79, 2000.
[15] Y. S. Lee, C.H. Chun,“Effects of a cusp magnetic field on the oscillatory convection coupled with crucible rotation in Czochralski crystal growth,”Journal of Crystal Growth, Vol.197, pp. 307-316, 1999.
[16] 宇慧平,隨允康,張峰翊,常新安,安國平,300mm的大直徑直拉單晶矽勾型磁場下生長的數值模擬,無機材料學報,Vol. 20,2005。
[17] Y. Xu, C. Liu, H. Wang, Q. Hao,“The Marangoni convection and the oxygen concentration in Czochralski-grown silicon,”Journal of Crystal Growth, Vol. 254, pp.298-304, 2003.
[18] E. Tomziga, J. Virbulisa, von Ammon W, Y. Gelfgat, L. Gorbunov,“Application of dynamic and combined magnetic fields in the300mm silicon single-crystal growth,”Materials Science in Semiconductor Processing, Vol.5, pp. 347–351, 2003.
[19] L. Liu, T. Kitashima, K. Kakimoto,“Global analysis of effects of magnetic field configuration on melt–crystal interface shape and melt flow in CZ-Si crystal growth,”Journal of Crystal Growth, Vol. 275, pp.2135-2139, 2005.
[20] C. Qisheng, D. Guyu, A. Ebadian, V. Prasad, “Numerical study on flow field and temperature distribution in growth process of 200 mm Czochralski silicon crystals,”Journal of Rare Earths, Vol. 25, pp. 345-348, 2007.
[21] H. Hirata,“Three-dimensional numerical analyses of the effects of a cusp magnetic field on the flows, oxygen transport and heat transfer in a Czochralski silicon melt,”Journal of Crystal Growth, Vol. 125,pp. 181-207,1992.
[22] T.W. Hicks, A.E. Organ, N. Riley,“Oxygen transport in magnetic Czochralski growth of silicon with a non-uniform magnetic field,”Journal of Crystal Growth, Vol. 94, pp. 213-228, 1989.
[23] P. Sahhapathy, ME. Salcudean,“Numerical study of Czochralski growth of silicon in an axisymmetric magnetic field,”Journal of Crystal Growth, Vol. 113, pp.164-180, 1991.
[24] V. V. Kalaev,“Combined effect of DC magnetic fields and free surface stresses on the melt flow and crystallization front formation during 400mm diameter Si Cz crystal growth,”Journal of Crystal Growth, Vol.303, pp. 203-210,2007.
[25] J. Virbulis, Th. Wetzel, A. Muiznieks, B. Hanna, E. Dornberger,E. Tomzig, A. Muhlbauer, W. v. Ammon,“Numerical investigation of silicon melt flow in large diameter CZ-crystal growth under the influence of steady and dynamic magnetic fields,”Journal of Crystal Growth, Vol.203, pp.92-99, 2001.
[26] V. Savolainen, J. Heikonen, J. Ruokolainen, O. Anttila, M. Laakso, J. Paloheimo,“Simulation of large-scale silicon melt flow in magnetic Czochralski growth,”Journal of Crystal Growth, Vol. 243, pp.243-260, 2002.
[27] M. Watanabe, M. Eguchi, T. Hibiya,“Flow and temperature field in molten silicon during Czochralski crystal growth in a cusp magnetic field,”Journal of Crystal Growth, Vol. 193, pp. 402-412, 1998.
[28] Y. S. Lee, C. H. Chun,“Experiments on the oscillatory convection of low Prandtl number liquid in Czochralski crystal growth under an axial magnetic field,”Journal of Crystal Growth, Vol.198/199, pp.147-153, 1999.
[29] X. Liu, L. Liu, Z. Y. Li, Y. Wang,“Effects of static magnetic fields on thermal fluctuations in the melt of industrial CZ-Si crystal growth,”Journal of Crystal Growth, Vol.360, pp.38-42, 2012.
[30] X. Cen, Y. S. Li, J. Zhan,“Three dimensional simulation of melt flow in Czochralski crystal growth with steady magnetic fields,”Journal of Crystal Growth, Vol. 340, pp. 135-141, 2012.
[31] H. Hirata, K. Hoshikawa,“Homogeneous increase in oxygen concentration in Czochralski silicon crystals by a cusp magnetic field,”Journal of Crystal Growth, Vol.96, pp.777-781, 1989.
[32] Y. H. Hong, B. W. Nam, B. C. Sim,“Effect of asymmetric magnetic fields on crystal–melt interface in silicon CZ process,”Journal of Crystal Growth, Vol. 366,pp.95-100,2013.
[33] K. Kakimoto, L. Liu,“Numerical study of the effects of cusp-shaped magnetic fields and thermal conductivity on the melt-crystal interface in CZ crystal growth,”Crystal Research and Technology, Vol. 38,pp. 716-725, 2003.
[34]X. Liu, L. Liu, Z. Li, Y. Wang,“Effects of cusp-shaped magnetic field on melt convection and oxygen transport in an industrial CZ-Si crystal growth,”Journal of Crystal Growth, Vol. 354, pp.101-108,2012.
[35]K. Kakimto, M. Eguchi, H. Ozoe,“Use of an inhomogeneous magnetic field for silicon crystal growth,”Journal of Crystal Growth, Vol.180, pp. 442-449,1997.
[36] K. Kakimoto,“Modeling of Magnetic Fields,”AIP Conference Proceedings, Vol. 916, pp. 159-175, Park City, Utah (USA), 2007 08.
[37] 黃正權,「外加水平式磁場柴氏長晶法生長矽單晶之熱流場數值模擬研究」,國立中央大學,碩士論文,民國101年。
[38] 鄧應揚,「多晶矽太陽能電池晶碇固化生長之熱流場研究」,國立中央大學,博士班資格考計畫書,民國97年。
[39] H. Matsuo, R. B. Ganesh, S. Nakano, L.J. Liu, Y. Kangawa, K. Arafune, Y. Ohshita, M. Yamaguchi, K. Kakimoto,“Thermodynamical analysis of oxygen incorporation from a quartz crucible during solidification of multicrystalline silicon for solar cell,”Journal of Crystal Growth, Vol. 310, pp.4666-4671, 2008.
[40]溫琬婷,「柴氏法生長單晶矽過程之氧雜質傳輸控制數值分析」,國立中央大學,碩士論文,民國99年。
[41] Y. Y. Teng, J. C. Chen, C. W. Lu, C. Y. Chen,“Numerical and experimental study for improving the concavity of the crystalline front in multicrystalline silicon ingots during the directional solidification process,”solidification process, submit to Solar Energy Material & Solar Cells.
[42] Y. Y. Teng, J. C. Chen, C. W. Lu, C. Y. Chen,“The carbon distribution in multicrystalline silicon ingots grown using the directional solidification process,”Journal of Crystal Growth, Vol. 312, pp.1282-1290, 2010.
[43]Y. Y. Teng, J. C. Chen, C. W. Lu, H. I. Chen, Chuck Hsu, C. Y. Chen,“Effects of the furnace pressure on oxygen and silicon oxide distributions during the growth of multicrystalline silicon ingots by the directional solidification process,”Journal of Crystal Growth, Vol. 318, pp.224-229, 2011.
[44] Y.Y. Teng, J.C. Chen, C.W. Lu, C.C. Huang, W.T. Wun, H.I Chen, C.Y. Chen, W.C. Lan,“Numerical simulation of the effect of heater position on the oxygen concentration in the CZ silicon crystal growth process,”International Journal of Photoenergy, 2012 (2012) Article ID 395235.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔