(34.239.150.57) 您好!臺灣時間:2021/04/19 00:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:葉彥良
研究生(外文):Yen-Liang Yeh
論文名稱:應用於微波及毫米波鎖相迴路之金氧半場效電晶體注入鎖定振盪器研究
論文名稱(外文):Research on CMOS Injection-Locked Oscillators for Microwave and Millimeter-Wave Phase-Locked Loop
指導教授:張鴻埜
指導教授(外文):Hong-Yeh Chang
學位類別:博士
校院名稱:國立中央大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:140
中文關鍵詞:注入鎖定鎖相迴路金氧半場效電晶體
外文關鍵詞:injection-lockedphase-locked loopCMOS
相關次數:
  • 被引用被引用:6
  • 點閱點閱:195
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
本博士論文主要針對應用於微波與毫米波鎖相迴路之注入鎖定振盪器的研究與討論。首先,介紹注入鎖定的基本理論,並提出一個注入鎖定振盪器的相位雜訊模型,從理論分析可以得知,注入鎖定振盪器的輸出相位雜訊包含注入訊號的相位雜訊且為低通濾波響應、與注入鎖定振盪器本身之相位雜訊且為高通濾波響應。所提出的相位雜訊模型可應用於次諧波注入鎖定鎖相迴路、注入鎖定除頻器與注入鎖定倍頻器設計分析中。
第三章提出一個使用90奈米CMOS之W頻帶注入鎖定除三除頻器,並使用二階諧波增強的技術,在不需額外的直流功耗下,提升注入鎖定除頻器的鎖定範圍,所提出的架構有較小輸入電容,更適合整合至W頻帶鎖相迴路中。此外,本論文也提出一針對鎖定範圍的理論模型,從理論模型分析得知,鎖定範圍跟注入器(injector)的元件尺寸與注入訊號的大小成正比。藉由適當地選擇注入器的閘極偏壓可以獲得最大的鎖定範圍。成功設計W頻帶注入鎖定除三除頻器,在未使用可變電容調整頻率的情況下,量測注入鎖定除頻器的鎖定範圍從91.4至93.5 GHz,輸出功率皆大於–15 dBm,核心直流功耗為1.5 mW,供應電壓為0.7 V。另一方面,所提出的注入鎖定除三除頻器也成玏地整合至V頻帶鎖相迴路,使用製程為65奈米CMOS,操作頻率為58.5 GHz時,在偏移中心頻1 MHz處量測相位雜訊為–83.5 dBc/Hz,直流總功耗為44 mW。
在第四章提出一個具有低直流功耗與寬注入鎖定範圍之注入鎖定三倍頻器,藉由使用變壓器耦合的架構,此次提出的注入鎖定三倍頻器具有下列之優點:1) 與過去傳統的注入鎖定三倍頻器相比,由於沒有源級退化(source degeneration),交叉耦合對(cross-coupled pair)所產生的負電阻不會減少,所以可以操作在低直流供應電壓與低功耗、2) 藉由適當選擇注入器的偏壓獲得最大化鎖定範圍、3) 利用阻抗轉換降低注入器的寄生電容、與4) 藉由選擇較大的元件尺寸,讓注入器產生更大的三階諧波功率。此外,採用多階共振腔再次提升操作頻率與鎖定範圍。接著,根據變壓器耦合架構,提出一個鎖定範圍的理論模型,並與實驗結果相互驗證。所提出的注入鎖定三倍頻器成功實現於90奈米CMOS,在未使用可變電容的情況下,量測注入鎖定三倍頻器之自由(free-running)振盪頻率為94.51 GHz。在注入功率為小於–1 dBm時,量測鎖定範圍為5.9 GHz,直流供應電壓與功耗分別為0.7 V與1 mW。
使用延遲鎖定迴路自我對準注入的技術,實現一個低抖動(jitter)與低相位雜訊10 GHz次諧波注入鎖定鎖相迴路。藉由此次提出的創新架構,讓注入訊號與壓控振盪器的輸出相位隨環境變異可以自動地對準,並進一步地降低抖動。發展出一套針對次諧波注入鎖定鎖相迴路的相位雜訊模型,藉由注入鎖定的技術,大幅改善次諧波注入鎖定鎖相迴路的中心頻雜訊,其中輸出相位雜訊的設計考量包含鎖定範圍與頻率除數。成功完成一個10 GHz之次諧波注入鎖定鎖相迴路,在操作頻率為10 GHz及偏移中心頻為1 MHz時,量測次諧波注入鎖定鎖相迴路之相位雜訊為–130.2 dBc/Hz,均方根值(rms)抖動44 fs,直流總功耗為62.7 mW。
最後,概括本論文所提出之研究成果,及未來可研究內容於第六章。

This doctoral dissertation focuses on the injection-locked oscillators for the microwave and millimeter-wave phase-locked loop (PLL). The basic concept of the injection-locked theory is introduced in Chapter 2. A phase noise model for the injection-locked oscillator (ILO) is proposed for the design and analysis. The output phase noise of the ILO is contributed from the injection signal with the lowpass response and the inherent noise of the ILO with the highpass response. The phase noise model of the ILO can be also applied to the sub-harmonically injection-locked PLL (SILPLL), injection-locked frequency divider (ILFD), and injection-locked frequency multiplier.
A W-band divide-by-three ILFD in 90 nm CMOS process is presented in Chapter 3. Based on the proposed topology, the locking range can be enhanced without additional dc power consumption due to the boost of the second harmonic in the ILFD, and the small input capacitance is more feasible for W-Band PLL integration. The locking range of the ILFD is investigated to obtain a theoretical model. From the analysis, the locking range is proportional to the device size of the injectors and the amplitude of the injection signal. In addition, the locking range can be enhanced with a proper gate dc bias of the injectors. The measured locking range of the proposed ILFD is from 91.4 to 93.5 GHz without varactor tuning, and the output power is higher than -15 dBm. The core dc power of the ILFD consumption is 1.5 mW with a supply voltage of 0.7 V. Furthermore, the proposed divide-by-three ILFD is also successfully integrated to a V-band PLL using 65 nm CMOS process. At an operation frequency of 58.5 GHz, the measured phase noise at 1 MHz offset is –83.5 dBc/Hz. The total dc power consumption of the PLL is 44 mW.
In Chapter 4, we proposed a W-band wide locking range injection-locked frequency tripler (ILFT) with low dc power consumption. By using a transformer coupled (TC) topology, the proposed TC-ILFT features the following advantages: 1) the negative resistance of the cross-coupled pair is not degraded due to the proposed TC-ILFT without source degeneration, and the TC-ILFT can be operated in lower dc supply voltage as compared to the conventional ILFTs, 2) the dc bias of the injector can be properly designed for maximizing locking range, 3) the parasitic capacitance provided by the injector can be reduced due to the impedance transformation, and 4) the larger device size of the injector can be chosen enhancing the third harmonic. Moreover, the operation frequency and the locking range are boosted using a multi-order resonator. A theoretical model of the proposed TC-ILFT is also established and it has been carefully verified with the experimental results. The free-running oscillation frequency of the proposed TC-ILFT is 94.51 GHz. As the input power is –1 dBm, the measured locking range is 5.9 GHz without varactor tuning. The dc supply voltage and the power consumption are 0.7 V and 1 mW, respectively.
A low jitter low phase noise 10-GHz SILPLL with delay-locked loop (DLL) self-aligned injection using 65 nm CMOS technology is presented in Chapter 5. With the proposed innovative topology, the phase between the injection signal and the sub-harmonically injection-locked voltage controlled oscillator (SILVCO) in the PLL can be dynamically aligned to minimize the jitter over the variation. A theoretical model for the SILPLL is developed for the design methodology, and the in-band phase noise of the SILPLL can be significantly improved using the SIL technique. The design considerations of the locking range and frequency division ratio are addressed. As the operation frequency is 10 GHz, the measured phase noise of the proposed SILPLL with self-aligned injection is –130.2 dBc/Hz at 1 MHz offset with a rms jitter of 44 fs. The total dc power consumption is 62.7 mW.
Finally, the conclusion and future works are given in Chapter 6.

摘要 I
Abstract III
List of Figures IX
List of Tables XIII
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Literatures Survey 2
1.3 Contributions 6
1.4 Dissertation Organization 7
Chapter 2 Injection Locking and Pulling in Oscillator 9
2.1 Concept of Injection Locking [6] 9
2.1.1 Phase Shift in the LC tank 9
2.1.2 Locking Range Analysis 11
2.2 Injection Locking [6] 12
2.2.1 Quasi-Lock 14
2.2.2 Fast Beat 16
2.3 Phase Noise in Injection-Locked Oscillator 16
2.4 Summary 19
Chapter 3 Design and Analysis of a W-band Divide-by-Three Injection-Locked Frequency Divider Using Second Harmonic Enhancement Technique 21
3.1 Introduction of Frequency Dividers 21
3.2 Circuit Topology 24
3.3 Locking Range Analysis 25
3.3.1 Quality Factor of The LC Tank 26
3.3.2 Injection and Oscillation Current 27
3.3.3 Locking Range 29
3.3.4 Layout Considerations of The Inductor 31
3.4 Circuit Design 33
3.5 Experimental Results and Discussions 36
3.6 Phase-Locked Loop Implementation with Proposed Divide-by-Three ILFD 39
3.6.1 Circuit Implementation of the V-band PLL 41
3.6.2 Experimental Results and Discussions of the V-band PLL 42
3.7 Performance Summary 44
Chapter 4 A W-band Wide Locking Range and Low DC Power Injection-Locked Frequency Tripler using Transformer Coupled Technique 47
4.1 Introduction of Frequency Multiplier 47
4.2 Circuit Design and Analysis 51
4.2.1 Negative Resistance Analysis 52
4.2.2 Phase Shift in the LC Tank and Locking Range Analysis 53
4.2.3 Injection through Transformer 57
4.2.4 Bias of the Injector 57
4.2.5 Device Size of the Injector 59
4.2.6 Frequency Boosting 61
4.2.7 Transformer Design 62
4.3 Experimental Results and Discussions 65
4.4 Performance Summary 70
Chapter 5 A Low Jitter Low Phase Noise 10-GHz Sub-Harmonically Injection-Locked PLL with Self-Aligned Injection in 65 nm CMOS Technology 73
5.1 Introduction of Conventional PLL 73
5.2 Sub-harmonically Injection-Locked PLL 75
5.3 Phase Noise Analysis of the SILPLL 78
5.4 Circuit Implementation 82
5.4.1 SILVCO and VCDL 83
5.4.2 Current-Mode-Logic Frequency Divider 84
5.4.3 Phase Detector and Frequency Detector 85
5.4.4 System Simulation for SILPLL 89
5.5 Measurement Results and Discussions 90
5.5.1 SILPLL without Self-Aligned Technique 90
5.5.2 SILPLL with Self-Aligned Technique 93
5.6 Performance Summary 96
Chapter 6 Conclusions 99
Reference 103
Publication List 115


[1]Y.-A. Li, M.-H. Hung, S.-J. Huang, and J. Lee, “A fully integrated 77GHz FMCW radar system in 65nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2010, pp. 216-217.
[2]T. Mitomo, N. Ono, H. Hoshino, Y. Yoshihara, O. Watanabe, and I. Seto, “A 77 GHz 90 nm CMOS transceiver for FMCW radar applications,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 928–937, Apr. 2010.
[3]D. Murphy, Q. J. Gu, Y.-C. Wu, H.-Y. Jian, Z. Xu, A. Tang, F. Wang, and M.-C. F. Chang, “A low phase noise, wideband and compact CMOS PLL for use in a heterodyne 802.15.3c transceiver,” IEEE J. Solid-State Circuits, vol. 39, no. 11, pp. 1606-1617, Jul. 2011.
[4]R. Appleby, and R. N. Anderton, “Millimeter-wave and submillimeter-wave imaging for security and surveillance,” Proc. IEEE, vol. 95, no. 8, pp. 1683-1690, Aug. 2007.
[5]P. Chen, P. Peng, C. Kao, Y. Chen, and Jri Lee, “A 94GHz 3D Image Radar Engine with 4TX/4RX Beamforming Scan Technique in 65nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2013, pp. 146-147.
[6]B. Razavi, “A study of injection locking and pulling in oscillators,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1415–1424, Sept. 2004.
[7]R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61, no. 10, pp. 1380-1385, Oct. 1973.
[8]Q. Jane Gu, H.-Y. Jian, Z. Xu, Y.-C. Wu, M.-C. Frank Chang, Y. Baeyens and Y.-K. Chen, “200GHz CMOS prescalers with extended dividing range via time-interleaved dual injection locking,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. Dig., Jun. 2010, pp. 69-72.
[9]I.-T. Lee, C.-H. Wang, B.-Y. Lin and S.-I. Liu, “258.16-259.95 GHz injection-locked frequency divider,” Electron. Lett., vol. 46, no. 21, pp. 1438-1439, Oct. 2010.
[10]B.-Y. Lin, I-T. Lee, C.-H. Wang, and S.-I. Liu, “A 198.9GHz-to-201.0GHz injection-locked frequency divider in 65nm CMOS,” in Proc. IEEE Very Large Scale Integr. Circuits Symp. Dig., Jun. 2010, pp. 49-50.
[11]B.-Y. Lin, and S.-I. Liu, “A 113.92 ~ 118.08 GHz injection-locked frequency divider with triple-split-inductor technique,” IEEE Microw.Wireless Compon. Lett., vol. 21, no. 8, pp. 436-438, Aug. 2011.
[12]B.-Y. Lin, and S.-I. Liu, “Analysis and design of D-band injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 46, no. 6, pp. 1250-1264, June 2011.
[13]I-T. Lee and S.-I. Liu, “G-band injection-locked frequency dividers using π-type LC networks,” IEEE Trans. Circuits Syst. I, vol. 59, no. 2, pp. 315-323, Feb. 2012.
[14]S.-W. Chu and C.-K. Wang, “An 85-GHz injection-locked frequency divider with current-reuse pre-amplifier technique,” in Proc. IEEE Asian Solid-State Circuits Conf., Nov. 2011, pp. 89-92.
[15]J. Yin, and H. C. Luong, “A 0.8V 1.9mW 53.7-to-72.0GHz self-frequency-tracking injection-locked frequency divider,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. Dig., Jun. 2012, pp. 305-308.
[16]Y. Chao, and H. C. Luong, “A 2.9mW 53.4–79.4GHz frequency-tracking injection-locked frequency divider with 39.2% locking range in 65nm CMOS,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. Dig., Jun. 2012, pp. 337-340.
[17]W.-S. Chang, K.-W. Tan, and S. S. H. Hsu, “A 56.5–72.2 GHz transformer-injection miller frequency divider in 0.13 μm CMOS,” IEEE Microw.Wireless Compon. Lett., vol. 20, no. 7, pp. 393-395, July 2010.
[18]K. Takatsu, H. Tamura, T. Yamamoto, Y. Doi, K. Kanda, T. Shibasaki and T. Kuroda, “A 60-GHz 1.65mW 25.9% locking range multi-order LC oscillator based injection locked frequency divider in 65nm CMOS,” in Proc. IEEE Custom Integr. Circuit Conf., Sept. 2012, pp. 1-4.
[19]Wang, L. Zhang, D. Yang, D. Zeng, L. Zhang, Y. Wang, and Zh. Yu, “A 60GHz wideband injection-locked frequency divider with adaptive-phase-enhancing technique,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. Dig., June 2011, pp. 1-4.
[20]Y.-T. Chen, M.-W. Li, T.-H. Huang, and Huey-Ru Chuang, “A V-Band CMOS direct injection-locked frequency divider using forward body bias technology,” IEEE Microw.Wireless Compon. Lett., vol. 20, no. 7, pp. 396-398, July 2010.
[21]C. Zhou, L. Zhang, Z. Yu, and H. Qian, “A wide-locking range V-Band injection-locked frequency divider,” in IEEE Int. Conf. on Solid-State and Integr. Circuit Tech., Oct. 2012, pp. 1-4.
[22]A. Katz, O. Degani, and E. Socher, “Modeling and design of a low-power injection-locked frequency divider in 90nm CMOS for 60GHz applications,” in Proc. IEEE Silicon Monolithic Integr. Circuits RF Systs Dig., Jan. 2011, pp. 61-64.
[23]J. Yun, H. Kim, H. Seo, and J.-S. Rieh, “A 140 GHz single-ended injection locked frequency divider with inductive feedback in SiGe HBT technology,” in Proc. IEEE Silicon Monolithic Integr. Circuits RF Systs Dig., Jan. 2011, pp. 61-64.
[24]H. Wu and L. Zhang, “A 16-to-18GHz 0.18m Epi-CMOS divide-by-3 injection-locked frequency divider,” in IEEE Int. Solid-State Circuits Conf., Tech. Dig., Feb. 2006, pp. 2482–2491.
[25]C.-H. Wang, C.-C. Chen, M.-F. Lei, M.-C. Chuang, and H. Wang, “A 66-72 GHz divide-by-3 injection-locked frequency divider in 0.13-μm CMOS technology,” in Proc. IEEE Asian Solid-State Circuits Conf., Nov. 2007, pp. 344–347.
[26]T.-N. Luo, S.-Y. Bai, Y.-J. E. Chen, “A 60-GHz 0.13-m CMOS divide-by-three frequency divider,” IEEE trans. Microw. Theory Tech., vol. 56, no. 11, pp. 2409-2415, Nov. 2008.
[27]T.-N. Luo, S.-Y. Bai and Y.-J. E. Chen, “77 GHz CMOS injection-locked Miller frequency divider,” Electron. Lett., vol. 45, no. 1, pp. 57–59, Jan. 2009.
[28]T.-N. Luo, S.-Y. Bai, Y.-J. E. Chen, C.-L. Ko, C.-F. Chiu, and Y.-Z. Juang, “A 43 GHz 0.13m CMOS prescaler,” in IEEE Radio Wireless Symp. Tech. Dig., Jan. 2008, pp. 179–182.
[29]H. M. Cheema, X. P. Yu, R. Mahmoudi, P. T.M. v. Zeijl, and A. v. Roermund, “A dual-mode mm-wave injection-locked frequency divider with greater than 18% locking range in 65nm CMOS,” in IEEE MTT-S Int Microw. Symp. Dig., May 2010, pp. 780–783.
[30]I-T. Lee, C.-H. Wang, and S.-I. Liu, “3.6mW D-band divide-by-3 injection-locked frequency dividers in 65nm CMOS,” in Proc. IEEE Asian Solid-State Circuits Conf., Nov. 2011, pp. 93-96.
[31]I.-T. Lee, C.-H. Wang and S.-I. Liu, “Current-reused divide-by-3 injection-locked frequency divider in 65 nm CMOS,” in Electron. Lett., vol. 47, no. 18, pp. 1029-1030, Sept. 2011.
[32]P.-H. Feng, and S.-I. Liu, “Divide-by-three injection-locked frequency dividers over 200 GHz in 40-nm CMOS,” IEEE J. Solid-State Circuits, vol. 48, no. 2, pp. 405-416, Feb. 2013.
[33]I.-T. Lee, C.-H. Wang, J.-R. Sha, Y.-Z. Juang and S.-I. Liu, “D-band divide-by-3 injection-locked frequency divider in 65 nm CMOS,” in Electron. Lett., vol. 48, no. 17, pp. 1041-1042, Aug. 2012.
[34]H. Seo, J. Yun and J.-S. Rieh, “SiGe 140 GHz ring-oscillator-based injection-locked frequency divider,” in Electron. Lett., vol. 48, no. 14, pp. 847-848, July 2012.
[35]H.-H. Hsieh, F.-L. Hsueh, C.-P. Jou, F. Kuo, S. Chen, T.-J. Yeh, K. K.-W. Tan, P.-Y. Wu, Y.-L. Lin, and M.-H. Tsai, “A V-band divide-by-three differential direct injection-locked frequency divider in 65-nm CMOS,” in Proc. IEEE Custom Integr. Circuit Conf., Sept. 2010, pp. 1-4.
[36]H.-H. Hsieh, Y.-H. Liu, T.-J. Yeh, C.-P. Jou, and F.-L. Hsueh, “A V-Band Divide-by-Three Injection-Locked Frequency Divider in 28 nm CMOS,” IEEE Microw.Wireless Compon. Lett., vol. 22, no. 11, pp. 592-594, Nov. 2012.
[37]H.-H. Hsieh, H.-S. Chen and L.-H. Lu, “A V-Band Divide-by-4 Direct Injection-Locked Frequency Divider in 0.18-μm CMOS,” IEEE trans. Microw. Theory Tech., vol. 59, no. 2, pp. 393-405, Feb. 2011.
[38]L. Wu, H. C. Luong, “A 0.6V 2.2mW 58-to-73GHz divide-by-4 injection-locked frequency divider,” in Proc. IEEE Custom Integr. Circuit Conf., Sept. 2012, pp. 1-4.
[39]I.-T. Lee, C.-H. Wang, C.-L. Ko, Y.-Z. Juang, and S.-I. Liu, “A 3.6 mW 125.7–131.9 GHz divide-by-4 injection-locked frequency divider in 90 nm CMOS,” IEEE Microw.Wireless Compon. Lett., vol. 22, no. 3, pp. 132-134, Mar. 2012.
[40]M.-W. Li, P.-C. Wang, T.-H. Huang, and H.-R. Chuang, “Low-voltage, wide-locking-range, millimeter-wave divide-by-5 injection-locked frequency dividers,” IEEE trans. Microw. Theory Tech., vol. 60, no. 3, pp. 679-685, Mar. 2012.
[41]L. Wang, Y.-Z. Xiong, S.-M. Hu, and T.-G. Lim, “A 0.13-μm HBT divide-by-6 injection-locked frequency divider,” in Proc. IEEE Asian Solid-State Circuits Conf., Nov. 2011, pp. 97-100.
[42]Z. Chen and P. Heydari, “An 85-95.2 GHz transformer-based injection-locked frequency tripler in 65nm CMOS,” in IEEE MTT-S Int. Microw. Symp. Dig., May. 2010, pp. 776–779.
[43]C.-N. Kuo, and T.-C. Yan, “A 60 GHz injection-locked frequency tripler with spur suppression,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 10, pp. 560–562, Oct. 2010.
[44]T.-C. Yan, H.-B. Lin, and C.-N. Kuo, “A V-band injection-locked frequency tripler module with adaptive free-running frequency tuning,” in IEEE MTT-S Int. Microw. Symp. Dig., June 2012, pp. 1-3.
[45]G. Mangraviti, B. Parvais, V. Vidojkovic, K. Vaesen, V. Szortyka,, K. Khalaf, C. Soens, G. Vandersteen, and P. Wambacq,, “A 52–66GHz subharmonically injection-locked quadrature oscillator with 10GHz locking range in 40nm LP CMOS,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. Dig., Jun. 2012, pp. 309-312.
[46]E. Monaco, M. Pozzoni, F. Svelto, and A. Mazzanti, “Injection-locked CMOS frequency doublers for μ-wave and mm-wave applications,” IEEE J. Solid-State Circuits, vol. 45, no. 8, pp. 1565-1574, Aug. 2010.
[47]F.-H. Huang, C.-C. Chen, H.-Y. Chang, and Y.-M. Hsin, “A 60-GHz 2×2 phased-array transmitter using injection-locked oscillator in 0.18 µm CMOS technology,” in Proc. IEEE Asian-Pacific Micro. Conf., Dec. 2010, pp. 538-541.
[48]F.-H. Huang, C.-K. Lin, and Y.-J. Chan, “V-band GaAs pHEMT cross-coupled sub-harmonic oscillator,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 8, pp. 473–475, Aug. 2006.
[49]S. Kishimoto, K. Maruhashi, M. Ito, T. Morimoto, Y. Hamada, and K. Ohata, “A 60-GHz-band subharmonically injection locked VCO MMIC operating over wide temperature range,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2005, pp. 1689–1692.
[50]K. Kamogawa, T. Tokumitsu, and I. Toyoda, “A 20-GHz-band subharmonically injection-locked oscillator MMIC with wide locking range,” IEEE Microw. Guided Wave Lett., vol. 7, no. 8, pp. 233–235, Aug. 1997.
[51]K. Kamogawa, T. Tokumitsu, and M. Aikawa, “Injection-locked oscillator chain: A possible solution to millimeter-wave MMIC synthesizers,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 9, pp. 1578–1584, Sept. 1997.
[52]M.-C. Chen and C.-Y. Wu, “Design and analysis of CMOS subharmonic injection-locked frequency triplers,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 8, pp. 1869–1878, Aug. 2008.
[53]W. K. Chan and J. R. Long, “A 56–65 GHz injection-locked frequency tripler with quadrature outputs in 90-nm CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2739–2746, Dec. 2008.
[54]S.-W. Tam, E. Socher, A. Wong, Y. Wang, L. D. Vu, and M.-C. F. Chang, “Simultaneous sub-harmonic injection-locked mm-wave frequency generators for multi-band communications in CMOS,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. Dig. Jun. 2008, pp. 131–134.
[55]Y.-L. Yeh, C.-S. Huang, and H.-Y. Chang, “A 20.7% locking range W-band fully integrated injection-locked oscillator using 90 nm CMOS technology,” in IEEE MTT-S Int. Microw. Symp. Dig., June 2012, pp. 1-3.
[56]C.-C. Wang, Z. Chen, and P. Heydari, “W-band silicon-based frequency synthesizers using injection-locked and harmonic triplers,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 5, pp. 1307-1320, May 2012.
[57]C. F. Liang and K.J. Hsiao, “An injection-locked ring PLL with self-aligned injection window,” in IEEE Int. Solid-State Circuits Conf., Tech. Dig., pp. 90-92, Feb. 2011.
[58]B. M. Helal, C.-M. Hsu, K. Johnson, and M. H. Perrott, “A low jitter programmable clock multiplier based on a pulse injection-locked oscillator with a highly-digital tuning Loop,” IEEE J. Solid-State Circuits, vol. 44, pp. 1391-1400, May 2009.
[59]I-T. Lee, Y.-J. Chen, S.-I. Liu, C.-P. Jou, F.-L. Hsueh, and H.-H. Hsieh, “A divider-less sub-harmonically injection-locked PLL with self-adjusted injection timing ” IEEE Int. Solid-State Circuits Conf., Tech. Dig., pp. 414-415, Feb. 2013.
[60]Y.-C. Huang and S.-I. Liu, “A 2.4 GHz sub-harmonically injection-locked PLL with self-calibrated injection timing” IEEE Int. Solid-State Circuits Conf., Tech. Dig., pp. 338-341, Feb. 2012.
[61]J. Lee, and H. Wang, "Study of subharmonically injection-locked PLLs," IEEE J. Solid-State Circuits, vol. 44, no. 5, pp. 1539-1553, May 2009.
[62]J. Lee, M. Liu, and H. Wang, “A 75-GHz phase-locked loop in 90-nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 43, no. 6, pp. 1414–1426, June 2008.
[63]K.-H Tsai and S.-L Liu, “A 43.7mW 96GHz PLL in 65nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2009, pp. 276–277.
[64]C. Lee and S. Luan Liu, “A 58-60.4GHz Frequency Synthesizer in 90nm CMOS”, in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2007, pp. 196-197.
[65]H. Hoshino, R. Tachibana, T. Mitomo, N. Ono, Y. Yoshihara and R. Fujimoto, “A 60-GHz Phase-Locked Loop with Inductor-less Prescaler in 90-nm CMOS”, in Proc. Eur. Solid-State Circuits Conf., Sept. 2007, pp. 427-475.
[66]K. Scheir1, G. Vandersteen, Y. Rolain,and P. Wambacq, “A 57-to-66GHz Quadrature PLL in 45nm Digital CMOS”, in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2009, pp. 494-495.
[67]C. Lee, L.-C. Cho, J.-H. Wu, and S.-I. Liu, “A 50.8-53GHz Clock Generator Using a Harmonic-Locked PD in 0.13um CMOS,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 55, no. 5, pp. 404–408, May 2008.
[68]K.-H. Tsai and S.-I. Liu, “A 62–66.1GHz phase-locked loop in 0.13um CMOS technology,” in IEEE Int. Symp. on VLSI Design, Automation and Test, Apr. 2008, pp. 113-116.
[69]H.-K. Chen, T. Wang, and S.-S. Lu, “A millimeter-wave CMOS triple-band phase-locked loop with a multimode LC-based ILFD,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 5, pp. 1327-1338, May 2011.
[70]S. Kang, J.-C. Chien, and A. M. Niknejad, “A 100GHz phase-locked loop in 0.13µm SiGe BiCMOS process,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. Dig., Jun. 2011, pp. 1-4.
[71]S. Shahramian, AdamHart, A. Tomkins, A. C. Carusone, P. Garcia, P. Chevalier, and S. P. Voinigescu, “Design of a Dual W- and D-Band PLL,” IEEE J. Solid-State Circuits, vol. 46, no. 5, pp. 1011-1022,May 2011.
[72]K.-H. Tsai, and S.-I. Liu, "A 104-GHz phase-locked loop using a VCO at second pole frequency," IEEE Trans. Very Large Scale Integr. Syst., vol. 20, pp. 80-88, Jan. 2012.
[73]B.-Y. Lin, and S.-I. Liu, "A 132.6-GHz phase-locked loop in 65 nm digital CMOS", IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 58, pp. 617-621, Oct. 2011.
[74]T.-Y. Chang, C.-S. Wang and C.-K. Wang, “A low power W-band PLL with 17-mW in 65-nm CMOS technology,” in Proc. IEEE Asian Solid-State Circuits Conf., Nov. 2011, pp. 81-84.
[75]L. Ye, Y. Wang, C. Shi, H. Liao, and R. Huang, “A W-band divider-less cascading frequency synthesizer with push-push ×4 frequency multiplier and sampling PLL in 65nm CMOS,” in IEEE MTT-S Int Microw. Symp. Dig., Jun. 2012, pp. 1-3.
[76]A. Tang, D. Murphy, G. Virbila, F. Hsiao, S.-W. Tam, H.-T. Yu, H.-H. Hsieh, C. P. Jou, Y. Kim, A. Wong, A. Wong, Y.-C. Wu, M.-C. F. Chang, “D-band frequency synthesis using a U-band PLL and frequency tripler in 65nm CMOS technology,” in IEEE MTT-S Int Microw. Symp. Dig., Jun. 2012, pp. 1-3.
[77]G. Liu, A. Trasser, and H. Schumacher, “A 64–84-GHz PLL with low phase noise in an 80-GHz SiGe HBT technology,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 12, pp. 3739-3748, Dec. 2012.
[78]Z. Xu, Q. J. Gu, Y.-C. Wu, H.-Y. Jian and M.-C. F. Chang, “A 70-78 integrated CMOS frequency synthesizer for W-Band satellite communications,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 12, pp. 3206-3218, Dec. 2011.
[79]Shahramian, AdamHart, A. Tomkins, A. C. Carusone, P. Garcia, P. Chevalier, and S. P. Voinigescu, “A low phase noise quadrature injection locked frequency synthesizer for mm-wave applications,” IEEE J. Solid-State Circuits, vol. 46, no. 11, pp. 2635-2649,Nov. 2011.
[80]T. Shima, J. Sato, K. Mizuno, and K. Takinami, “A 60 GHz CMOS PLL synthesizer using a wideband injection-locked frequency divider with fast calibration technique,” in Proc. IEEE Asia-Pacific Micro. Conf., Dec. 2011, pp. 1530-1533.
[81]T. Shima, K. Miyanaga, and K. Takinami, “A 60 GHz PLL synthesizer with an injection locked frequency divider using a fast VCO frequency calibration algorithm,” in Proc. IEEE Asia-Pacific Micro. Conf., Dec. 2011, pp. 1530-1533.
[82]M. Tabesh, J. Chen, C. Marcu, L. Kong, S. Kang, A. M. Niknejad, and E. Alon, “A 65 nm CMOS 4-element sub-34 mW/element 60 GHz phased-array transceiver,” IEEE J. Solid-State Circuits, vol. 46, no. 12, pp. 3018-3032,Dec. 2011.
[83]C.-Y. Wu, M.-C. Chen, and Y.-K. Lo, “A phase-locked loop with injection-locked frequency multiplier in 0.18-μm CMOS for V-band applications,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 7, pp. 1629–1636, July 2009.
[84]R. C. H. v. d. Beek, C. S. Vaucher, D. M. W. Leenaerts, E. A. M. Klumperink, and B. Nauta, “A 2.5-10-GHz clock multiplier unit with 0.22-ps RMS jitter in standard 0.18-m CMOS,” IEEE J. Solid-State Circuits, vol. 39, no. 11, pp. 1862-1872, Nov. 2004.
[85]Y.-H. Peng, and L.-H. Lu, “A Ku-band frequency synthesizer in 0.18-m CMOS technology,” IEEE Microw.Wireless Compon. Lett., vol. 17, no. 4, pp. 256-258, Apr. 2007.
[86]Y.-H. Peng, and L.-H. Lu, “A 16-GHz triple-modulus phase-switching prescaler and its application to a 15-GHz frequency synthesizer in 0.18-m CMOS,” IEEE Trans. Microw. Theory Tech., vol.55, no.1, pp.44-51, Jan. 2007.
[87]S.-J. Li, H.-H. Hsieh, and L.-H. Lu, “A 10 GHz phase-locked loop with a compact low-pass filter in 0.18 m CMOS,” IEEE Microw.Wireless Compon. Lett., vol. 19, no. 10, pp. 659-661, Oct. 2009.
[88]P.-S. Weng and L.-H. Lu, “A 30 GHz CMOS frequency synthesizer for V-band applications,” IEEE Microw.Wireless Compon. Lett., vol. 22, no. 8, pp. 433-435, Aug. 2012.
[89]T.-H. Lin, and Y.-J. Lai, “An agile VCO frequency calibration technique for a 10-GHz CMOS PLL,” in IEEE J. Solid-State Circuits, vol. 42, no. 2, pp. 340–349, Feb. 2007.
[90]J.-O. Plouchart, J. Kim, V. Karam, R. Trzcinski, and J. Gross, “Performance variations of a 66GHz static CML divider in 90nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2006, pp. 2142–2151.
[91]D. Lim, J. Kim, J.-O. Plouchart, C. Cho, D. Kim, R. Trzcinski, and D. Boning, “Performance variability of a 90GHz static CML frequency divider in 65nm SOI CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2007, pp. 542–543.
[92]S. Kudszus, W. H. Haydl, M. Neumann, and M. Schlechtweg, “94/47-GHz regenerative frequency divider MMIC with low conversion loss” IEEE J. Solid-State Circuits, vol. 35, no. 9, pp. 1312-1317, Sept. 2000.
[93]M. Seo, M. Urteaga, A. Young, and M. Rodwell, “A 305–330+ GHz 2:1 Dynamic Frequency Divider Using InP HBTs,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 8, pp. 468-470, Aug. 2010.
[94]A. Rylyakov, L. Klapproth, B. Jagannathan, and G. Freeman, “100 GHz dynamic frequency divider in SiGe bipolar technology,” Electron. Lett., vol. 39, pp. 217-218, Jan. 2003.
[95]S. Kudszus, W. H. Haydl, M. Neumann, and M. Schlechtweg, “94/47-GHz regenerative frequency divider MMIC with low conversion loss” IEEE J. Solid-State Circuits, vol. 35, no. 9, pp. 1312-1317, Sept. 2000.
[96]J. Lee and B. Razavi, “A 40-GHz frequency divider in 0.18-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, no. 4, pp. 594–601, Apr. 2004.
[97]W.-Z. Chen and C.-L. Kuo, “18 GHz and 7 GHz superharmonic injection-locked dividers in 0.25 m CMOS technology,” in Proc. Eur. Soild-State Circuits Conf., Sep. 2002, pp. 89–92.
[98]X. P. Yu, M. A. Do, J.-G. Ma, W. M. Lim, K. S. Yeo, and X. L. Yan, “Sub-1 V low power wide range injection-locked frequency divider,” IEEE Microw.Wireless Compon. Lett., vol. 17, no. 7, pp. 528–530, Jul. 2007.
[99]K.-H. Tsai, L.-C. Cho, J.-H. Wu, and S.-I. Liu, “3.5mW W-band frequency divider with wide locking range in 90nm CMOS technology,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2008, pp. 466–467.
[100]Y.-H. Kuo, J.-H. Tsai, H.-Y. Chang, and T.-W. Huang, “Design and analysis of a 77.3% locking-range divide-by-4 frequency divider,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 10, pp. 2477-2485, Oct. 2011.
[101]D. Shim, C. Mao, S. Sankaran, and K. K. O, “150 GHz complementary anti-parallel diode frequency tripler in 130 nm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 1, pp. 43-45, Jan. 2011.
[102]T. Bryllert, A. Malko, J. Vukusic, and J. Stake, “A 175 GHz HBV frequency quintupler with 60 mW output power,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 2, pp. 76-78, Feb. 2012.
[103]C. Mao, C. S. Nallani, S. Sankaran, E. Seok, and K. K. O, “125-GHz diode frequency doubler in 0.13-μm CMOS,” IEEE J. Solid-State Circuits, vol. 44, no. 5, pp. 1531-1538, May 2009.
[104]Y. Lee, J. R. East, and L. P. B. Katehi, “High efficiency W-band GaAs monolithic frequency multipliers,” IEEE Trans. Microw. Theory Tech., vol. 52, pp. 529-535, Feb. 2004.
[105]G.-L. Tan and G. M. Rebeiz, “High-power millimeter-wave planar doublers,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2000, vol. 3, pp. 1601-1604.
[106]U. R. Pferiffer, C.Mishra, R. M. Rassel, S. Pinkett, and S. K. Reynolds, “Schottky barrier diode circuits in silicon for future millimeter-wave and Terahertz applications,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 2, pp. 364-371, Feb. 2008.
[107]C.-S. Lin, P.-S. Wu, M.-C. Yeh, J.-S. Fu, H.-Y. Chang, K.-Y. Lin, and H. Wang, “Analysis of multiconductor coupled-line Marchand baluns for miniature MMIC design,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 6, pp. 1190-1199, June 2007.
[108]Y.-G. Kim, K. W. Kim, and Y.-K. Cho, “A planar ultra-wideband balanced doubler,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2008, pp. 1243-1246.
[109]R. Bitzer, “Planar broadband MIC balanced frequency doublers,” in IEEE MTT-S Int. Microw. Symp. Dig., July 1991, vol. 1, pp. 273-276.
[110]S. A. Maas and Y. Ryu, “A broadband, planar, monolithic resistive frequency doubler,” in IEEE MTT-S Int. Microw. Symp. Dig., May 1994, vol. 1, pp. 443-446.
[111]Bryllert, A. Malko, J. Vukusic, and J. Stake, “A 25-75 GHz miniature double balanced frequency doubler in 0.18-μm CMOS Technology,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 4, pp. 275-277, Apr. 2008.
[112]T. Kiuru, J. Mallat, A. V. Räisänen, and T. Närhi, “Compact broadband MMIC Schottky frequency tripler for 75–140 GHz”, in Proc. Eur. Micro. Integr. Circuits Conf., Oct. 2011, pp. 108-111.
[113]Y. Wang, W. L. Goh, Y.-Z. Xiong, “A 9% power efficiency 121-to-137GHz phase-controlled push-push frequency quadrupler in 0.13μm SiGe BiCMOS,” in IEEE Int. Solid-State Circuits Conf., Tech. Dig., Feb. 2012, pp. 262-264.
[114]Y. Campos-Roca, C. Schwörer, A. Leuther, and M. Seelmann-Eggebert “G-band metamorphic HEMT-based frequency multiplier,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 7, pp. 2893–2992, Jul. 2006.
[115]A. Boudiaf, D. Bachelet, and C. Rumelhard, “A high-efficiency and low-phase-noise 38 GHz pHEMT MMIC tripler,” IEEE Trans. Microw. Theory Tech., vol. 48, no. 12, pp. 2546–2553, Dec. 2000.
[116]J. C. Chiu, C. P. Chang, M. P. Houng, and Y. H.Wang, “A 12–36 GHz PHEMT MMIC balanced frequency tripler,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 1, pp. 19–21, Jan. 2006.
[117]Y. Campos-Roca, L. Verweyen, M. Fernández-Barciela, E. Sánchez, M. C. Currás-Francos, W. Bronner, A. Hülsmann, and M. Schlechtweg, “An optimized 25.5–76.5 GHz PHEMT-based coplanar frequency tripler,” IEEE Microw. Guided Wave Lett., vol. 10, no. 6, pp. 242–244, Jun. 2000
[118]N.-C. Kuo, Z.-M. Tsai, K. Schmalz, J. C. Scheytt, and H. Wang, “A 52-75 GHz frequency quadrupler in 0.25-µm SiGe BiCMOS process”, in Proc. Eur. Micro. Integr. Circuits Conf., Sept. 2010, pp. 365-368.
[119]E. Öjefors, B. Heinemann and U. R. Pfeiffer, “A 325 GHz Frequency Multiplier Chain in a SiGe HBT Technology,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. Dig. May 2010, pp. 91-94.
[120]E. Öjefors, B. Heinemann, and U. R. Pfeiffer, “Active 220- and 325-GHz frequency multiplier chains in an SiGe HBT technology,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 5, pp. 1311-1318, May 2011.
[121]J.-H. Chen, and H. Wang, “A high gain, high power K-band frequency doubler in 0.18 μm CMOS process,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 9, pp. 522-524, Sept. 2010.
[122]K. Y. Lin, J. Y. Huang, and S. C. Shin, “A K-band CMOS distributed doubler with current-reuse technique,” IEEE Mircow. Wireless Compon. Lett., vol. 19, no. 5, pp. 308-310, May 2009.
[123]K. Yamamoto, “A 1.8-V operation 5-GHz-band CMOS frequency doubler using current-reuse circuit design technique,” IEEE J. Solid State Circuits, vol. 40, no. 6, pp. 1288-1295, Jun. 2005.
[124]N.-C. Kuo, J.-C. Kao, Z.-M. Tsai, K.-Y. Lin, and H. Wang, “A 60-GHz frequency tripler with gain and dynamic-range enhancement,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 3, pp. 660-671, Mar. 2011.
[125]U. J. Lewark, A. Tessmann, H. Massler, S. Wagner, A. Leuther, and I. Kallfass, “300 GHz active frequency-tripler MMICs,” in Proc. Eur. Micro. Integr. Circuits Conf., Sept. 2011, pp. 236-339.
[126]B. M. Helal, M. Z. Straayer, G.-Y. Wei, and M. H. Perrott, “A highly digital MDLL-based clock multiplier that leverages a self-scrambling time-to-digital converter to achieve subpicosecond jitter performance,” IEEE J. Solid-State Circuits, vol. 43, pp. 855-863, Apr. 2008.
[127]F.-R. Liao and S.-S. Lu, "A programmable edge-combining DLL with a current-splitting charge pump for spur suppression,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, pp. 946-950, Dec. 2010.
[128]A. E. Siegman, Lasers. Mill Valley, CA: University Science Books, 1986.
[129]B. Mesgarzadeh, M. Hansson, and A. Alvandpour, “Jitter Characteristic in Charge Recovery Resonant Clock Distribution,” IEEE J. Solid-State Circuits, vol. 42, no. 7, pp. 1618-1625, Jul. 2007.
[130]C.-Y. Wu and C.-Y. Yu, “Design and analysis of a millimeter-wave direct injection-locked frequency divider with large frequency locking range,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 8, pp. 1649–1658, Aug. 2007.
[131]C.-C. Chen, H.-W. Tsao, and H. Wang, “Design and analysis of CMOS frequency dividers with wide input locking ranges,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 12, pp. 3060–3069, Dec. 2009.
[132]B.-Y. Lin, K.-H. Tsai, and S.-I. Liu, “A 128.24-to-137.00GHz injection-locked frequency divider in 65nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2009, pp. 282–283.
[133]B. Razavi, Design of analog CMOS integrated circuits, New York: McGraw-Hill, 2001, ch. 2.
[134]A. Hajimiri and T. H. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 717–724, May 1999.
[135]“Sonnet User’s Guide,” 12th ed. Sonnet Software, Inc., North Syracuse, NY, 2009.
[136]I. A. Young, J. K. Greason, and K. L. Wong, “A PLL clock generator with 5 to 110 MHz of lock range for microprocessors ,” IEEE J. Solid-State Circuits, vol. 27, no. 11, pp. 1599-1607, Nov. 1992.
[137]H. Kondoh, H. Notani, T. Yoshimura, H. Shibata, and Y. Matsuda, “A 1.5-V 250-MHz to 3.0-V 622-MHz operation CMOS phase-locked loop with precharge type phase-detector,” IEICE Trans. Electron., vol. E78-C, no. 4, pp. 381-388, Apr. 1995.
[138]T.-N. Luo, Y.-J. E. Chen, “A 0.8-mW 55-GHz Dual-injection-locked CMOS frequency divider,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 3, pp. 620-625, Mar. 2008.
[139]X. Zhang, X. Zhou, and A. S. Daryoush, “A theoretical and experimental study of the noise behavior of subharmonically injection locked local oscillators,” IEEE Trans. Microw. Theory Tech., vol. 40, no. 5, pp. 895-902, May 1992.
[140]F. Giannini and G. Leuzzi, Nonlinear Microwave Circuit Design, John Wiley & Sons, Ltd, England, 2004.
[141]S. Verma, H. R. Rategh, and T. H. Lee, “A unified model for injectionlocked frequency dividers,” IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 1015-1027, Jun. 2003.
[142]C.-K. Hsieh, K.-Y. Kao, J. R. Tseng, and K.-Y. Lin, “A K-band CMOS low power modified Colpitts VCO using transformer feedback,” in IEEE MTT-S Int Microw. Symp. Dig., June 2009, pp. 1293–1296.
[143]Y.-L. Yeh, and H.-Y. Chang, “Design and analysis of a W-band divide-by-three injection-locked frequency divider using second harmonic enhancement technique,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 06, pp. 1617-1625, Jun. 2012.
[144]B. Razavi, RF Microelectronics, Upper Saddle River, NJ: Prentice Hall, 1998, ch. 7.
[145]F. Tzeng, P. Pi, A. Safarian, and P. Heydari, “Theoretical analysis of novel multi-order LC oscillators,” IEEE Trans. Circuits Syst. II: Expr. Briefs, vol. 54, no. 3, pp. 287–291, Mar. 2007.
[146]L.-C. Cho, C. Lee, and S.-I. Liu, “A 1.2-V 37-38-GHz eight-phase clock generator in 0.13-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 42, pp. 1261-1270, Jun. 2007.
[147]C.-A. Lin, J.-L. Kuo, K.-Y. Lin, and H. Wang, “A 24 GHz low power VCO with transformer feedback,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. Dig., Jun. 2009, pp. 75-78.
[148]A. Pottbacker, U. Langmann, and H.-U. Schreiber “A Si bipolar phase and frequency detector IC for clock extraction up to 8 Gb/s,” IEEE J. Solid-State Circuits, vol. 27, no. 12, pp. 1747-1751, Dec. 1992.
[149]X. Gao, E. A. M. Klumperink, P. F. J. Geraedts, and B. Nauta, “Jitter analysis and a benchmarking figure-of-merit for phase-locked loops,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 56, no. 2, pp. 117-121, Feb. 2009.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔