(3.227.235.183) 您好!臺灣時間:2021/04/17 11:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:謝雨蓁
研究生(外文):Yu-Chen Hsieh
論文名稱:標準互補式金屬氧化物半導體結合微機電製程之850-nm側面照光矽光檢測器
指導教授:辛裕明
指導教授(外文):Yue-Ming Hsin
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:101
中文關鍵詞:光檢測器累崩光檢測器標準CMOS製程側面照光微機電製程
外文關鍵詞:Avalanche photodiodesCMOS integrated circuitsedge-illuminated photodiodesmicro-electro-mechanical systems (MEMS)photodetectorsphotodiodes
相關次數:
  • 被引用被引用:0
  • 點閱點閱:122
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用0.18 μm CMOS標準製程結合微機電(MEMS)製程形成一側面照光之850 nm矽光檢測器;結構乃使用標準製程形成一水平式光檢測器,再利用微機電製程蝕刻至元件邊緣,使其露出照光面,並利用透鏡式光纖(lensed fiber)直接照射至元件主動層。與傳統之垂直照光式光檢測器比較,可證實側面照光之方式確實降低了基板區因入射光所形成的擴散載子,進而大幅提升元件之頻寬。3-dB頻寬的改善可由垂直照光光檢測器之0.9 GHz提升至側面照光元件之3.4 GHz。
利用思發科技公司之二維元件模擬軟體模擬證明,降低基板區之照光量,可改善擴散載子成份造成的頻率響應滑落(roll-off)情形,達到提升頻寬的效果。另外,本論文針對側面照光光檢測器之尺寸進行分析,因為850 nm波長之光的穿透深度(penetration depth)僅有約20 μm,故當元件之主動區長度較長時,雖然其響應度會增加,但其頻寬值卻會下降。當元件之主動區長度為20 μm時,其頻寬值可改善至5.4 GHz。

This study examines edge-illuminated silicon photodiodes (PDs) fabricated with standard CMOS technology operating at 850-nm wavelength. A micro-electro-mechanical systems process (MEMS) is employed to expose the illuminated surface and achieve edge illumination. A single-mode lensed fiber is employed to inject light into the depletion region of the PD directly, limiting and reducing the diffusive carriers within the bulk Si substrate. Using this procedure achieves greater performance in 3-dB bandwidth than the vertically illuminated PD in this study. The 3-dB bandwidth for the vertically illuminated PD is only 0.9 GHz because of the critical diffusion component. However, the diffusion component generated in the bulk Si substrate is reduced, the 3-dB bandwidth for the edge-illuminated PD is improved to 3.4 GHz. Moreover, Silvaco TCAD simulation is used to verify that the diffusion roll-off could be improved by reducing the diffusion component of photocurrent.
Finally, the characteristics of the different size edge-illuminated PDs are investigated. When the length of PD’s active region is longer than 20 μm, the 3-dB bandwidth will degrade. It’s because the penetration depth of the 850 nm-wavelength light into Si is less than 20 μm. The best 5.4 GHz high bandwidth is obtained from an edge-illuminated PD with a 20 μm ×15.6 μm active region.

摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 x
第一章 導論 1
1.1 研究動機 1
1.2 相關研究發展 4
1.3 論文架構 12
第二章 光檢測器簡介 13
2.1 簡介 13
2.2 基本原理及特性 13
2.2.1 光檢測器工作原理 13
2.2.2 響應度及累增增益 15
2.2.3 光檢測器響應時間分析 17
2.3 垂直照光與側面照光光檢測器 18
2.4 標準CMOS製程與微機電(MEMS)製程簡介 19
2.4.1 以標準CMOS製程實現光檢測器 19
2.4.2 微機電製程介紹 22
2.5 結論 23
第三章 標準CMOS製程之側面照光光檢測器 24
3.1 簡介 24
3.2 光檢測器頻率響應之模擬與分析 24
3.3 元件模擬與設計 29
3.4 元件量測結果 39
3.4.1 元件直流特性與響應度 39
3.4.2 元件頻率響應 44
3.5 光檢測器等效電路模型 48
3.5.1 CMOS光檢測器之阻抗特性 48
3.5.2 光檢測器之模型萃取 49
3.6 結論 60
第四章 側面照光光檢測器之尺寸分析 61
4.1 簡介 61
4.2 元件設計 61
4.3 元件量測結果 63
4.3.1 元件直流特性與響應度 63
4.3.2 元件頻率響應 68
4.4 元件模擬驗證 71
4.4 光檢測器等效電路模型 73
4.5 結論 83
第五章 總結 84
參考文獻 85

[1] S. Radovanovic, “High-Speed Photodiodes in Standard CMOS Technology,” Print Partners Ipskamp, 2004.
[2] H. J. R. Dutton, Understanding Optical Communications. Sep. 1998.
[3] J. S. Youn, M. J. Lee, K. Y. Park, and W. Y. Choi, “10-Gb/s 850-nm CMOS OEIC Receiver with a Silicon Avalanche Photodetector,” IEEE J. Quantum Electron., vol. 48, No.2, Feb. 2012.
[4] C. Rooman, D. Coppée, and M. Kuijk, “Asynchronous 250-Mb/s Optical Receivers with Integrated Detector in Standard CMOS Technology for Optocoupler Applications,” IEEE J. Solid-State Circuits, vol.35, No.7, July, 2000.
[5] M. J. Lee and W. Y. Choi, “A silicon avalanche photodetector fabricated with standard CMOS technology with over 1 THz gain-bandwidth product,” Opt. Express, vol. 18, Nov. 2010.
[6] B. Ciftcioglu, L. Zhang, J. Zhang, J. R. Marciante, J. Zuegel, R. Sobolewski, and H. Wu, "Integrated Silicon PIN Photodiodes Using Deep N-Well in a Standard 0.18-μm CMOS Technology,” IEEE J. Lightwave Technol., vol. 27, no. 15, Aug. 2009.
[7] K. Iiyama, H. Takamatsu, and T. Maruyama, “Hole-Injection-Type and Electron-Injection-Type Silicon Avalanche Photodiodes Fabricated by Standard 0.18 μm CMOS Process,” IEEE Photon. Technol. Lett., vol. 22, no. 12, Jun. 2010.
[8] B. Yang, J. D. Schaub, S. M. Csutak, D. L. Rogers, and J. C. Campbell, “10-Gb/s All-Silicon Optical Receiver,” IEEE Photon. Technol. Lett., Vol. 15, No. 5, pp.745-747, May. 2003.
[9] S. G. Thomas, S. Csutak, R.E. Jones, S. Bharatan, C. Jasper, R. Thomas, T. Zirkle and J.C. Campbell, “CMOS-compatible photodetector fabricated on thick SOI having deep implanted electrodes, ” Electron. Lett., vol. 38, no. 20, pp. 1202-1204, Sep. 2002.
[10] W. K. Huang, Y.-C. Liu and Y.-M. Hsin, “Bandwidth enhancement in Si photodiode by eliminating slow diffusion photocarriers,” Electron. Lett., vol. 44, no. 1, Jan. 2008.
[11] F.-P. Chou, G.-Y. Chen, C.-W. Wang, Z.-Y. Li, Y.-C. Liu, W.-K. Huang, and Y.-M. Hsin, “Design and Analysis for a 850 nm Si Photodiode Using the Body Bias Technique for Low-voltage Operation,” IEEE J. Lightwave Technol., vol. 31, no. 6, Mar. 2013.
[12] S. B. Alexander, Optical Communication Receiver Design. SPIE Press, 1997.
[13] Kasap, S. O., Optoelectronics and photonics: principles and practices, Prentice Hall, 2001
[14] G. Keiser, Optical Fiber Communications. McGRAW Hill, 2000.
[15] S. M. Sze, Physics of Semiconductor Devices, 3rd ed. John Wiley & Sons Inc, 2007.
[16] H. Zimmermann, Integrated Silicon Optoelectronics. New York: Springer, 2000.
[17] J. E. Bowers and C. A. Bums, Jr., “Ultrawide-band long-wavelength p-i-n photodetectors,” Lightwave Technol. , vol. LT-5, 1987.
[18] J.-W. Shi, P.-H. Chiu, F.-H. Huang, Y.-S. Wu, Ja-Yu Lu, C.-K. Sun, C.-W. Liu, and P.-S. Chen, “Si/SiGe-based edge-coupled photodiode with partially p-doped photo absorption layer for high responsivity and high-power performance,” IEEE Appl. Phys. Lett., vol. 88, issue. 19, May 2006.
[19] J. Wang, W. Y. Loh, K. T. Chua, H. Zang, Y. Z. Xiong, T. H. Loh, M. B. Yu, and S. J. Lee, Guo-Qiang Lo, and D.-L. Kwong, “Evanescent-Coupled Ge p-i-n Photodetectors on Si-Waveguide With SEG-Ge and Comparative Study of Lateral and Vertical p-i-n Configurations, ” IEEE Electron Device Lett., vol. 29, issue.5, May 2008.
[20] G. P. Agrawal, Fiber-Optical Communication Systems. John Wiley & Sons Inc 2002.
[21] S. Radovanovic, A. J. Annema and B. Nauta., “Physical and electrical bandwidths of integrated photodiodes in standard CMOS technology,” IEEE Conf. on Electron Devices and Solid-State Circuits, Dec. 2003.
[22] F.-P. Chou, C.-W. Wang, Z.-Y. Li, Y.-C. Hsieh, and Y.-M. Hsin, “Effect of Deep N-Well Bias in an 850-nm Si Photodiode Fabricated Using the CMOS Process,” IEEE Photon. Technol. Lett., vol. 25, no. 7, April 2013.
[23] CIC User Handbook - 0.18 μm CMOS MEMS Process v.2.1
[24] B. Nakhkoob, S. Ray, and M. M. Hella, “High speed photodiodes in standard nanometer scale CMOS technology: a comparative study,” Opt. Express, Vol. 20, no. 10, May 2012.
[25] R. Fujimoto, K. Kojima, and S. Otaka., “A 7-GHz 1.8-dB NF CMOS low-noise amplifier, ” IEEE J. of Solid-State Circuits, vol. 37, no.7, pp. 852-856, Jul. 2002
[26] M. J. Lee, H.S. Kang, and W. Y, Choi, “Equivalent Circuit Model for Si Avalanche Photodetectors Fabricated in Standard CMOS Process”, IEEE Electron Device Lett., Vol. 29, No. 10, Oct. 2008.
[27] H.-S. Kang, “CMOS-Compatible High-Speed Silicon Photodetectors for Gbps Fiber-Fed Wireline/Wireless Communication Systems,” The Graduate School Yonsei University, Department of Electrical and Electronic Engineering. 2009.
[28] M. J. Lee, and W.Y. Choi, “Area-Dependent Photodetection Frequency Response Characterization of Silicon Avalanche Photodetectors Fabricated With Standard CMOS Technology,” IEEE Trans. on Electron Devices, Vol. 60, No. 3, March 2003.
[29] Y.-C. Wang, “Small-signal characteristics of a read diode under conditions of field-dependent velocity and finite reverse saturation current,” Solid State Electron., vol. 21, no. 4, April 1978.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔