(3.237.20.246) 您好!臺灣時間:2021/04/14 10:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:何明珊
研究生(外文):Ming-Shan Ho
論文名稱:使用獨立成份分析法於視覺誘發紅外光血流反應分析
論文名稱(外文):Analysis of Visual-Related Near-Infrared Response Using Independent Component Analysis
指導教授:李柏磊
指導教授(外文):Po-Lei Lee
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:62
中文關鍵詞:近紅外光譜獨立成份分析法視覺誘發血流反應
外文關鍵詞:Near-infrared spectroscopy (NIRS)Independent Component Analysis (ICA)visual induced hemodynamic response
相關次數:
  • 被引用被引用:0
  • 點閱點閱:113
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,隨著腦造影技術的進步,大腦的探索成為熱門的研究議題。尤其是非侵入式腦影像的發展,更進一步幫助人們了解腦部特定區域運作與其主要功能之間的關係。而近紅外光譜(Near-infrared spectroscopy,NIRS)是近年來受到注視的一種非侵入式腦影像技術,因為其具有靈敏的時間解析度及高空間解析度,並且能在開放空間中做動態實驗量測不同作業下的血流反應,因此受到許多研究團隊的採用。
本研究提出一套運用獨立成份分析法(Independent Componenet Analysis, ICA)於視覺誘發血流訊號的紅外光光譜分析方法,藉由獨立成份分析法,多通道紅外光血流訊號被分解成許多獨立成份(Independent component,IC),每一個獨立成份接著與經由傳統平均方法所建立樣版模型訊號進行比對,選擇適當的獨立成份,進一步進行訊號重建,萃取出與視覺刺激相關的紅外光血流訊號。
本研究量測受視覺刺激誘發的紅外光訊號,並比較不同頻率和不同大小視覺刺激源的訊號。實驗結果證實,獨立成份分析法可有效的分離萃取出視覺訊號,進而提升訊號訊雜比。

With the advanced developments of brain imaging technologies, brain exploration has become a popular research field in recent years. Especially, the developments in noninvasive brain imaging techniques enable people to understand the functions of specific brain regions and the connectivities among different brain areas. Near infrared spectroscopy (NIRS) is a novel non-invasive brain imaging tool which measures hemodynamic response in accordance with subject’s specific performing tasks. It has the advantages of high temporal and high spatial resultions, and capability of being operated in open-space environment. Therefore, the NIRS has been chosen as an important tool by several research group for functional brain studies.
In this study, we have proposed an independent component (ICA) – based analysis method for extracting visual-induced near infrared oxygen and deoxygen hemodynamic signals. With ICA, the multi-channel NIRS signals were first decomposed into a series of independent components (IC), and these ICs were correlated with a signal template, generated from traditional averaging method. Those ICs, which had high correlation values, were chosen as task-related components for constructing noise-suppressed hemodynamic response.
This thesis studied visual-related near-infrared responses under visual stimuli with distinct sizes and frequencies. Our study results have shown the ICA is an effective tool to improve the signal-to-noise ratio (SNR) in visual-related NIRS signals.

目錄
中文摘要 I
英文摘要 II
致謝 III
目錄 IVI
圖目錄 VI
表目錄 IX
第一章、緒  論 1
1-1  非侵入式醫學影像技術 1
1-1-1  正子斷層造影 1
1-1-2  腦電圖 1
1-1-3  腦磁圖 2
1-1-4  磁振造影 2
1-1-5  近紅外光譜 2
1-1-6 小結 3
1-2  研究動機 3
1-3  文獻回顧 3
1-4  研究目的 4
1-5  論文架構 4
第二章、理論介紹 5
2-1  大腦與視覺系統 5
2-1-1 大腦結構與功能 5
2-1-2 視覺系統 7
2-2  近紅外光光譜學 10
2-3  Beer-Lambert Law 12
2-4  獨立成份分析法 14
2-4-1 獨立成份分析法理論 14
2-4-2 獨立成份分析法演算流程 16
第三章、材料與方法 23
3-1  儀器設備 23
3-1-1 近紅外光量測設備 23
3-1-2 近紅外光量測光極帽 25
3-1-3 視覺刺激來源 28
3-2  系統架構 28
3-3  實驗設計 28
3-4  訊號分析 30
3-4-1 訊號前處理 31
3-4-2 建立血氧濃度反應模型 33
3-4-3 獨立成份分析法 37
第四章、結果與討論 39
4-1  實驗結果 39
4-1-1 ICA分析結果 39
4-1-2 Topography比較 42
4-1-3 視覺刺激源圖形大小比較 44
4-1-4 視覺刺激頻率比較 44
第五章、結論與未來展望 45
參考文獻 46

〔1〕 Wikipedia : Positron Emission Tomography,http://en.wikipedia.org/wiki/Positron_emission_tomography
〔2〕 吳峻名,擴散光學斷層掃描術:系統設計以及臨床量測研究,國立台灣大學碩士論文,民國96年。
〔3〕 科學人雜誌:何謂腦波,http://sa.ylib.com/MagCont.aspx?Unit=easylearn&id=1820
〔4〕 Wikipedia : 神經成像,http://zh.wikipedia.org/wiki/%E7%A5%9E%E7%BB%8F%E6%88%90%E5%83%8F
〔5〕 台北榮民總醫院教學研究部-整合性腦功能研究小組:腦磁波儀,http://ibru.vghtpe.gov.tw/meg.htm
〔6〕 Wikipedia : 核磁共振成像,https://zh.wikipedia.org/wiki/%E6%A0%B8%E7%A3%81%E5%85%B1%E6%8C%AF%E6%88%90%E5%83%8F
〔7〕 Wikipedia : 功能性磁振造影,http://zh.wikipedia.org/wiki/%E5%8A%9F%E8%83%BD%E6%80%A7%E7%A3%81%E5%85%B1%E6%8C%AF%E6%88%90%E5%83%8F
〔8〕 台北榮民總醫院教學研究部-整合性腦功能研究小組:近紅外光光譜儀, http://ibru.vghtpe.gov.tw/fNIRS.htm
〔9〕 Lloyd-Fox S., Blasi, Elwell C.E., “Illuminating the developing brain: The past, present and future of functional near infrared spectroscopy”, Neuroscience & Biobehavioral Reviews, vol.34, pp. 269-284, 2010.
〔10〕Jöbsis F.F., “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameter ”, Science , vol.198, pp. 1264-1267, 1977.
〔11〕Yu G., Durduran T., Lech G., Zhou C., Chance B., Yodh A.G., “Time dependent blood flow and oxygenation in human skeletal muscles by noninvasive near-infrared diffuse optical spectroscopies ” , Journal of Biomedical Optics, vol.10, 2005.
〔12〕Chance B., Zhuang Z., UnAh C., Alter C., Lipton L., “Cognition-activated low-frequency modulation of light absorption in human brain ”, Proceedings of the National Academy of Sciences of the United States of America, vol. 90 ,pp. 3770-3774, 1993.
〔13〕Hoshi Y. and Tamura M., “Detection of dynamic changes in cerebral oxygenation coupled to neuronal function during mental work in man”, Neuroscience letter, vol. 150, pp. 5-8, 1993.
〔14〕Shimada S., Hiraki K., Matsuda G., and Oda I. , “Decrease in prefrontal hemoglobin oxygenation during reaching tasks with delayed visual feedback : A near-infrared spectroscopy study”, Brain Rearch Cognitive Brain Research, vol.20, pp.480-490, 2004.
〔15〕 Meek J.H., Elwell C.E., Khan M.J., Romaya J., Wyatt J.D., Delpy D.T., and Zeki, S., “Regional changes in cerebral hemodynamics as a result of a visual stimulus measured by near infrared spectroscopy”, Proceedings of Royal Societyof London, vol.261, pp. 351–356, 1995.
[16〕 Heekeren H. R., Obrig H., Wenzel R., Eberle K., Ruben J., Villringer K., Kurth R., and Villringer A.,“Cerebral haemoglobin oxygenation during sustained visual stimulation - a near-infrared spectroscopy study”, Philosophical Transactions: Biological Sciences, vol.352, pp.743–750, 1997.
[17]Jasdzewski G., Strangman G., Wagner J., Kwong K.K., Poldrack R. A., Boas D.A., “Differences in the hemodynamic response to event-related motor and visual paradigms as measured by near-infrared spectroscopy”, NeuroImage, vol.20, pp. 479–488, 2003.
[18]Sato H., Kiguchi M., Kawaguchi F., Maki A., ”Practicality of wavelength selection to improve signal-to-noise ratio in near-infrared spectroscopy”, NeuroImage, vol.21, pp. 1554–1562, 2004.
〔19〕Wikipedia : 腦,http://zh.wikipedia.org/wiki/%E8%84%91
[20]Wikipedia : 白質,http://zh.wikipedia.org/wiki/%E7%99%BD%E8%B3%AA
[21]Wikipedia : 基底核,http://zh.wikipedia.org/wiki/%E5%9F%BA%E5%BA%95%E6%A0%B8.
[22]Wikipedia : 大腦,http://zh.wikipedia.org/wiki/%E5%A4%A7%E8%84%91
[23]新化高中生物網路教室 : 大腦,http://210.60.246.140/bio/2010/PDF/6-3(2).pdf
[24]Bear M.F., Connor B.W., and Paradiso M.A., Neuroscience Exploring the Brain,3/e, Lippincott Williams & Wilkins, 2006
〔25〕Seeley R.R., Tate P., and Stephens T.D., Essentials of Anatomy and Physiology, 6/e, Boston: McGraw-Hill, 2007.
[26]Measuring Vegetation Health: Near Infrared and the Electromagnetic Spectrum, http://mvh.sr.unh.edu/mvhtools/near_ir.htm..
[27]Son I.Y., Yazıcı B., “Near Infrared Imaging and Spectroscopy for Brain Activity Monitoring.”, Advances in Sensing with Security Applications NATO Security Through Science Series, vol.2, pp. 341-372, 2006.
[28]Wikipedia : Beer–Lambert law,http://en.wikipedia.org/wiki/Beer%27s_Law
[29]Hyvärinen. A., “Fast and Robust Fixed-Point Algorithms for Independent Component Analysis”, IEEE Transactions on Neural Networks, vol. 10, no. 3, pp.626-634, 1999.
〔30〕Hyvärinen A. and Oja E., “Independent Component Analysis: Algorithms and Applications ”, Neural Networks, vol. 13, no. 4, pp.411-430, 2000.
〔31〕Comon P., “Independent Component Analysis, a new concept ?”, Signal Processing Elsevier, vol.36, pp.287-314, 1994.
〔32〕Yates R.D. and Goodman D.J., “Probility and Stochastic Process”, John Wiley & Sons, Inc., New York, 1999.
〔33〕NIRx Medical Technologies: NIRScout , http://www.nirx.net/imagers/nirscout.
〔34〕Malmivuo J. and Plonsey R., Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagentic Fields, Oxford University Press, USA, 1955.
〔35〕Wylie G.R., Graber H.L., Voelbel G.T., Kohl A.D., DeLuca J., Pei Y., Xu Y., Barbour R.L., “ Using co-variations in the Hb signal to detect visual activation:A near infrared spectroscopic imaging study”, NeuroImage, vol.47, no. 2, pp. 473–481, 2009.
〔36〕鄧華婷,應用獨立成份分析法於大腦運動區近紅外光譜分析,國立中央大學碩士論文,民國101年。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔