跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/10 19:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:魏志叡
研究生(外文):Zhi-Rui Wei
論文名稱:應用於中距離(2km)至短距離光連結知單模態、高速、高輸出光功率的850nm波段面射型雷射
指導教授:許晉瑋許晉瑋引用關係
指導教授(外文):Jin-Wei Shi
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:69
中文關鍵詞:面射型雷射單模態
相關次數:
  • 被引用被引用:0
  • 點閱點閱:311
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
我們將展示垂直共振腔面射型雷射應用於短距離至中距離(2km)於850nm波段具有高度單模輸出、高輸出光功率其細節結構設計。若要進一步的提高資料量與距離乘積比,其高速的提高調製速度與減小動態調製下頻譜半高寬,藉此減少色散是非常重要的。而要製作出單一模態輸出的VCSELs最直接的方式就是將其水氧化孔徑縮小至2µm,但這樣的方式會造成極高的微分電阻(differential resistance)、低輸出光功率( <~2mW)及可靠度方面的問題。輸出光功率是相對重要的,850nm波段在標準光纖內每公里衰減3.5dB的明顯傳輸損耗。不過我們藉由氧化層掏離(Oxide Relief)孔徑和鋅擴散孔徑之前相對大小的最佳化,不需將氧化孔徑微縮至很小,不但能達到高輸出光功率( >6mW)、高單模態輸出, 且達到一個合理的臨限電流(threshold current)( ~1.5mA)。此外我們的方式可以大大降低普遍發生在單模輸出雷射的低頻滾落現象,使最大數據傳輸速率達到26Gbit/sec,且利用OM4-MMF之光纖的傳輸距離達到2 km ,得到一高資料量與距離乘積比為28Gbit km/s (14Gbit/s x 2 km)。
We demonstrate the detail design consideration and fabrication of a highly single-mode, high-power, and high-speed vertical-cavity surface-emitting lasers (VCSELs) at 850 nm for the application of short to medium reach (~2 km) optical interconnect.
Reducing the dynamic linewidth of VCSELs under high-speed modulation is essential to minimize the chromatic dispersion and further improve the bit-rate distance product in transmission. Among the reported (quasi) single-mode VCSELs technique, downscaling the size of oxide aperture (~2 um) of VCSELs is one of the most straightforward ways.
However, such miniaturized oxide-apertures VCSELs would have a large differential resistance, reliability issues, and a limited maximum single-mode output power (< ~2 mW), which plays an important role in determining the maximum linking distance of fiber with a significant propagation loss at 850 nm wavelength (~3.5 dB/km).
Here, by optimizing the relative geometric sizes between the oxide-relief and Zn-diffusion apertures in our demonstrated 850 nm VCSELs, we can not only attain highly single-mode output power (~6 mW) but also sustain the large size of oxide aperture (~9 um) with a reasonable threshold current (~1.5 mA).
Furthermore, due to the optimizing of dimension of optical cavity, the spatial hole burning effect induced low-frequency roll-off can be minimized in our proposed structure with a maximum data rate up to 26 Gbit/sec.
Record-high bit rate-distance products for OM4 MMF transmission under on-off keying (14 Gbit/sec 2.2 km) modulation formats have been successful demonstrated by use of our VCSEL.

摘 要 i
Abstract ii
致謝 iii
目 錄 iv
圖目錄 v
表目錄 viiii
第一章 序論 1
1-1 簡介 1
1-2 光連結應用 1
1-3 面射型雷射簡介 7
第二章 理 論 9
2-1 VCSEL的磊晶結構 9
2-2 鋅擴散於DBR 12
2-3 VCSEL的選擇性水氧化理論 16
2-4 水氧層掀離製作 18
2-5 高速單模態VCSEL製作 19
2-6 發散角 24
第三章 實 驗 26
3-1 鋅擴散製程 26
3-2 水氣氧化 28
3-3 製作電極(P-metal 和N-metal) 32
3-4 金屬回火(Annealing)和平坦化 34
第四章 量測結果與討論 37
4-1量測系統 37
4-1-1. 電流對電壓(I-V)的量測 37
4-1-2. 光功率對電流(L-I)之量測 37
4-1-3. 遠場(Far field)之量測系統 38
4-1-4. 遠場(Far field)投影之量測系統 38
4-1-5. 頻譜(Spectrum) 之量測系統 39
4-1-6. 頻寬(Bandwidth)之量測系統 39
4-1-7. 眼圖(Eye pattern)之量測系統 40
4-2 掀離式水氧層合併鋅擴散型VCSEL量測結果 42
4-2-1. VCSEL元件結構圖 42
4-2-2. 電流對電壓(I-V)及輸出光功率對電流 (L-I)曲線 44
4-2-3. 光頻譜(Optical spectra)圖 47
4-2-5. 遠場(Far field)發散角(Divergence angle) 48
4-2-6. 遠場 (Far field) 投影 50
4-2-7. 頻寬(Bandwidth) 51
4-2-7. 大訊號眼圖 (eye pattern) 量測 55
4-2-8. Benchmark 59
第五章 結論與未來研究 60
Reference 61

[1] “300-Gb/s, 24-Channel Full-Duplex, 850-nm, CMOS-Based Optical Transceivers,” in Proc. OFC 2008 , pp. OMK5, San Diego, CA, Feb., 2008.
[2] NEIL SAVAGE, “Linking with Light,” IEEE Spectrum, vol. 39, issue 8, Aug. 2002.
[3] Shigeru Nakagawa, Daniel Kuchta, Clint Schow, Richard John, Larry A. Coldren,Yu-Chia Chang, “1.5mW/Gbps Low Power Optical Interconnect Transmitter Exploiting High-Efficiency VCSEL and CMOS Driver,” in Proc. OFC 2008, pp. OThS3, San Diego, CA, Feb. 2008.
[4] K. Tai, G. Hasnain. D. Wynn, R. J. Fischer and Y. H. Wang et al., “90% coupling of top surface emitting GaAs/AlGaAs quantum well laser output into 8μm diameter core silica fiber”, Elec. Lett. 13th, vol. 26 No.19,(1990)
[5] Y.J. Yang, T.G. Dziura, S. C. Wang, R. Fernandez, G. Du, and S. Wang, “Low threshold room-temperature operation of a GaAs single quantum well mushroom structure surface emitting lser”, Soc. Photo-opt Instrun. Eng.,vol. 1418, pp.414-421,(1991).
[6] Y.J. Yang, T. G. Dziura, R. Frenandez, S. C. Wang, G. Du, and S. Wang,”Low threshold operation of a GaAs single quantum wll mushroom structure surface emitting laser”, Appl. Phys. Lett., 58, pp.1780-1782(1991).
[7] Nguyen Hong Ky, J. D., Ganiere, M. Gailhanou, B. Blanchard, L. Pavesi, G. Burri, D. Araujo and F. K. Reinhart “Self-interstitial mechanism for Zn diffusion-induced disordering of GaAs/AlxGa1-xAs (x=0.1-1) multiple-quantum-well structures.” J. Appl. Phys. ,73, pp3769-3781 (1993).
[8] Van Vechten,” Intermixing of an AlAs-GaAs superlattice by Zn diffusion ” J. Appl. Phys.55, p.607(1984).
[9] W. D. Laidig, N. Holonyak, Jr., M. D. Camras, K.Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, “Disorder of an AlAs-GaAs superlattice by impurity diffusion“ Appl.Phys.Lett.38,776,(1981).
[10] I. Harrison, H. P. Ho, B. Tuck, M. Henini, and O. H. Hughes, “Zn diffusion-induced disorder in AlAs/GaAs superlattice”Semicond. Sci. Technol., 4, pp.841-846, (1989).
[11] 陳志誠”穩態單橫模和穩定極化的面射型雷射”國立台灣大學電機工程學系博士論文 (民國90年)
[12] R. G. Hunsperger, Integrated Optics:Theory and Technology, Hong Kong, Springer-Verlag, 77, (1992).
[13] S. K. Ageno, R. J. Roedel, N. Mellen, and J. S. Escher, Appl. Phys. Lett. 47, p.1193, (1985).
[14]C. J. Chang-Hasnain, M. Orenstein, A. V. Lehmen, L. T.Florez, and J. P. Harbison, “Transverse mode characteristics of vertical-cavity surface-emitting lasers” Appl. Phys. Lett., vol. 57, pp.218-220, 1990.
[15] B. E. Deal and A. S. Grove, “General Relationship for the Thermal Oxidation of Silicon”, J. Appl. Phys., vol. 36, p. 3770, (1965).
[16] M. Ochiai et al., Appl. Phys. Lett., 68, 1898(1996)][J. H. Kim , Appl. Phys. Lett. ,69, 3357(1996).
[17] Kent D. Choquette, Kent M. Geib, Carol I. H. Ashby, Ray D. Twesten, Olga Blum, Hong Q. Hou, David M. Follstaedt, B. Eugene Hammons, Dave Mathes, and Robert Hull, “Advances in Selective Wet Oxidation of AlGaAs Alloys” ,IEEE J. Sel. Topics In Quantum Electron., vol. 3, no. 3, June 1997.
[18] Kent D. Choquette, K. L. Lear, R. P. Schneider, Jr., K. M. Geib, J. J. Figiel, and Robert Hull, “Fabrication and Performance of Selectively Oxidized Vertical-Cavity Lasers” Photon. Tech. Lett. 7, 1237, (1995).
[19] N. Hplonyak, Jr., and J. M. Dallesasse, USA Patent #5,262,360 (1993).
[20] K. D. Choquette, K. M. Geib, H. C. Chui, B. E. Hammons, H. Q. Hou, T. J. Drummond, and R. Hull, “Selective oxidation of buried AlGaAs versus AlAs layers,” Appl. Phys. Lett. 69, 1935-1837 (1996).
[21] K. L. Lear, R. P. Schneidner, Jr., K. D. Choquette, and S. P. Kilcoyne, “Index guiding dependent effects in implant and oxide confined vertical-cavity lasers,” IEEE Photon. Technol. Lett., vol 8, pp.740-742,(1996).
[22] D. L. Huffaker, J. Shin, and D. G. Deppe, “Lasing characteristics of low threshold microcavity lasers using half-wave spacer layers and lateral index confinement,”Appl. Phys. Lett., vol 66, pp.1723-1725, (1995).
[23] K. D. Choquette, K. L. Lear, R. P. Schneider, Jr.,and K. M. Geib,”Cavity characteristics of selectively oxidized vertical-cavity lasers,”Appl. Phys. Lett., vol. 66, pp.3413-3415, 1995.
[24] K. L. Lear and A. N. Al-Omari, “Progress and issues for high speed vertical cavity surface emitting lasers,” Proc. SPIE, vol. 6484, pp. 64840J-1-64840J-12, 2007.
[25] R. S. Geel, S. W. Corzine, J. W. Scott, D. B. Young, and L. A. Coldren, “Low threshold 57 planarized Vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett., vol. 2, pp. 234, 1990.
[26] Å. Haglund, J. S. Gustavsson, J. Vukuˇsic´, P. Modh, Member, IEEE, and A. Larsson, Member, IEEE, “Single Fundamental-Mode Output Power Exceeding 6mW From VCSELs With a Shallow Surface Relief,” IEEE Photon. Technol. Lett., vol. 16, no. 2,Feb. 2004.
[27] Å. Haglund, J. S. Gustavsson, P. Modh, Member, IEEE, and A. Larsson, Member IEEE,” Dynamic Mode Stability Analysis of Surface Relief VCSELs Under Strong RF Modulation,” IEEE Photon. Technol. Lett., vol. 17, no. 8, Aug. 2005.
[28] Akio Furukawa, Satoshi Sasaki, Mitsunari Hoshi, Atsushi Matsuzono, Kosuke Moritoh , Toshihiko Baba,” High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure,” Appl. Phys. Lett., vol. 85, no. 22, Nov. 2004.
[29] E. W. Young, K. D. Choquette, S. L. Chuang, K. M. Geib, A. J. Fischer, and A. A. Allerman, “Single-transverse-mode vertical-cavity lasers under continuous and pulsed operation,” IEEE Photon. Technol. Lett., vol. 13, pp. 927-929, Sep. 2001.
[30] Meng Peun Tan,1 James A. Lott,’’ 25 Gb/s Transmission over 1-km OM4 Multimode Fiber Using a Single Mode Photonic Crystal VCSEL’’ CLEO:2013 Technical Digest © OSA 2013.
[31] Y. Liu, W.-C. Ng, B. Klein, and K. Hess, “Effects of the spatial nonuniformity of optical transverse modes on the modulation response of vertical-cavity-surface-emitting lasers,” IEEE J. Quantum Electron., vol. 39, no. 1, pp. 99–108, Jan. 2003.
[32] Hermann A. Haus,”Waves and Fields in Optoelectronics”(1984).
[33] J.-W. Shi, C.-C. Chen, Y.-S. Wu, S.-H. Guol, Chihping Kuo, and Ying-Jay Yang, “High-Power and High-Speed Zn-Diffusion Single Fundamental-Mode Vertical-Cavity Surface-Emitting Lasers at 850-nm Wavelength,” IEEE Photon.
[34] Weng W. Chow, Kent D. Choquette, Mary H. Crawford, Kevin L. Lear, and G. Ronald Hadley, “Design, Fabrication, and Performance of Infrared and Visible Vertical-Cavity Surface-Emitting Lasers”, J. Quantum Electron., 33, 1810-1824,(1997).
[35] Y.-C. Chang, C. S. Wang, and L. A. Coldren, “High-efficiency, highspeed VCSELs with 35 Gbit/s error-free operation,” Electron. Lett., vol. 43, no. 19, pp. 1022–1023, 2007
[36] L.A. COLDREN, S.W. CORZINE, “Diode Lasers and Photonic Integrated Circuits,” Wiley October 1995.
[37] J. S. Gustavsson, A. Haglund, J. Bengtsson, P. Modh, and A. Larsson, “Dynamic behavior of fundamental-mode stabilized VCSELs using shallow surface relief,” IEEE J. Quantum Electron., vol. 40, no. 6, pp. 607–619, Jun. 2004.
[38] R. Safaisini, K. Szczerba, E. Haglund, P. Westbergh, J. S. Gustavsson, A. Larsson, and P. A. Andrekson, “20 Gbit/sec error-free operation of 850 nm oxide-confined VCSELs beyond 1 km of multimode fibre,” Electron. Lett., vol. 48, no. 29, Sep., 2012.
[39] P. Moser, J. A. Lott, P. Wolf, G. Larisch, A. Payusov, N. N. Ledentsov, W. Hofmann, and D. Bimberg, “99 fJ/(bit.km) Energy to Data-Distance Ratio at 17 Gb/s Across 1 km of Multimode Optical Fiber With 850-nm Single-Mode VCSELs,” IEEE Photon. Technol. Lett., vol. 24, no. 1, pp. 19-21, Jan., 2012.
[40] G. Giaretta, R. Michalzik, A. J. Ritger, “Long distance (2.8 km), short wavelength (0.85 m) data transmission at 10 Gb/sec over new generation high bandwidth multimode fiber,” Conference on Lasers and Electro-Optics, (CLEO/QELS’00) OSA Technical Digest, San Francisco, CA, USA, May, 2000, pp. 683-684.
[41] P. Pepeljugoski, D. Kuchta, Y. Kwark, P. Pleunis, and G. Kuyt, “15.6-Gb/s transmission over 1 km of next generation multimode fiber,” IEEE Photon. Technol. Lett., vol. 14, no. 5, pp. 717–719, May, 2002.
[42] M. P. Tan, J. A. Lott, S. T. M. Fryslie, N. N. Ledentsov, Dieter Bimberg, and K. D. Choquette “25 Gb/s Transmission over 1-km OM4 Multimode Fiber Using a Single Mode Photonic Crystal VCSEL,” Conference on Lasers and Electro-Optics, (CLEO/QELS’13) OSA Technical Digest, San Jose, CA, USA, June, 2013, pp. CTu3L.3.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 具有單空間模態,低發散角,高功率的鋅擴散二維850nm面射型雷射陣列
2. 應用在光連接具有高可靠度高速(>25Gbit/sec) 850光波段的垂直共振腔雷射
3. 應用於850到1550 nm波長光連結且 具有高速,高效率和大面積的p-i-n光偵測器
4. 串聯及並聯陣列結構對準單模 850 nm光波段垂直共振腔面射型雷射之調制速度和輸出功率表現的增強
5. 超高速覆晶式(>300GHz)高功率(~mW)光偵測器製作與量測
6. 具有鋅擴散和氧化掏離結構的超高速(>50 Gbps)垂直共振腔面射型雷射和其在200 Gbps短波波長多工系統的應用
7. 使用砷化鋁銦為基料並具有垂直正面入射結構、高速、高線性度、高增益頻寬積、和高靈敏度的累增崩潰二極體在100 Gbit/sec ER-4 通信系統的應用
8. 應變量子井和波長偏移量對超高速(>40Gbit/sec) 850nm光波段的垂直共振腔面射型雷射之高溫和動態 特性的影響
9. 超高速(~300GHz)光偵測器的製造與其在毫米波生物晶片上的應用
10. 超高速單載子傳輸光偵測器和其在超寬頻帶的波導耦合式兆赫茲光子傳輸器之應用
11. 具有鋅擴散/氧化掏離結構之超高速(> 50 Gbit/sec) 940 nm光波段之垂直共振腔面射型雷射
12. 高速、低暗電流具有雙電荷層正面收光InAlAs 累增崩潰光二極體
13. 操作在零直流偏壓和次兆赫波頻段下並具有集極漸變帶溝的高性能銻砷化鎵/磷化銦單載子光偵測器
14. 以磷化銦為基材,應用於850nm波段且具有高速(>25Gbit/sec),高效率大主動區孔徑的pin光檢測器之設計和分析
15. 具有超低耗能,傳輸資料量比值在850nm波段超高速(40 Gb/s)面射型雷射