(18.204.2.190) 您好!臺灣時間:2021/04/19 08:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭穎鴻
研究生(外文):Ying-hing Cheng
論文名稱:應用於850到1550 nm波長光連結且 具有高速,高效率和大面積的p-i-n光偵測器
論文名稱(外文):High-Speed, High-Efficiency, and Large-Area p-i-n Photodiode for the Applications of Optical Interconnect from 0.85 to 1.55 um Wavelengths
指導教授:許晉瑋許晉瑋引用關係
指導教授(外文):Jin-wei Shi
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:78
中文關鍵詞:高速大面積光偵測器
外文關鍵詞:high speedlarge areaphotodiode
相關次數:
  • 被引用被引用:0
  • 點閱點閱:195
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
對於操作在大於25 Gbit/sec光波長範圍從0.85 μm到1.55 μm,我們提出新型有大主動區直徑的InP(磷化銦)光偵測器結構。在結構中0.85μm激發波長下,因為In0.53Ga0.47As有大的吸收常數(3 "μm-1" ),故P型In0.53Ga0.47As作為吸收層其且慢的電洞傳輸會被消除,由於RC限制頻寬和載子傳輸時間之間取得平衡,故(~4 μm)厚度In0.53Ga0.47As有著完美電子傳輸特性。此外,為了讓最上層P型In0.53Ga0.47As吸收層最大限度地減少嚴重的表面複合,故再P型In0.53Ga0.47As吸收層上加上一層P型In0.52AlxGa0.48-xAs漸變式摻雜層,漸變式摻雜層不僅能均勻吸收光,而且可以加快電子擴散。分別操作在波長0.85 μm到1.55 μm,偏壓-1V下,此元件實現了高速(14 和 22 GHz)和高響應度(0.25 和 0.9 A/W)。在兩個波長下,已證實資料傳輸高達30 Gbit/sec且清楚的看到眼圖(無誤碼)。
We demonstrate a novel InP based photodiodes structure with large active diameters (55 "μ" m) for > 25 Gbit/sec operations at the optical wavelengths which range from 0.85 to 1.55 μm. By utilizing the large absorption constant (>3 "μ" m-1) of In0.53Ga0.47As based p-type absorption layer under 0.85 μm wavelength excitation, the slow hole transport can be eliminated in our structure and the trade-off between RC-limited bandwidth and carrier transient time can be greatly released due to the excellent characteristics of electron transport in the intrinsic and thick In0.53Ga0.47As layer (~4 μm). Furthermore, in order to minimize the serious surface (absorption) recombination in the top p-type In0.53Ga0.47As absorption layer, an additional p-type In0.52AlxGa0.48-xAs graded bandgap layer (GBL) is grown above it. Such GBL can not only uniform the profile of photo-absorption but also accelerate the electron diffusion process. Under -1 V bias, these devices can achieve high-speed (14 and 22 GHz), and high responsivity (0.25 and 0.9 A/W), at 0.85 and 1.55 μm wavelength operation respectively. Clear eye-opening (error-free) with data rate up to around 30 Gbit/sec have also been demonstrated in both wavelengths.
摘要 i
Abstract ii
致謝 iii
目錄 v
圖目錄 vi
表目錄 x
第一章 序論 1
1-1 多媒體時代 1
1-2 光連結應用 1
1-3 同質接面之磷化銦光偵測器原理 11
1-4 設計大主動區直徑的同質接面之磷化銦光偵測器 18
1-5 論文動機 22
第二章 高速光偵測器的設計原理及製作 25
2-1 元件磊晶結構設計 25
2-2 高速光偵測器之模擬與分析 28
2-3 元件製作步驟 32
第三章 實驗與量測分析 44
3-1 實驗系統架設 44
3-2 量測結果與數據分析 47
第四章 結論與未來展望 62
參考文獻 63

[1]C. L. Schow, F. E. Doany, C. Tsang, N. Ruiz, D. Kuchta, C. Patel, R. Horton, J.
Knickerbocker, and J. Kash “300-Gb/s, 24-Channel Full-Duplex, 850-nm, CMOS-Based Optical Transceivers,” in Proc. OFC 2008 , pp. OMK5, San Diego, CA, Feb., 2008.
[2]N. Savage, “Linking with Light,” IEEE Spectrum, vol. 39, issue 8, Aug. 2002.
[3]S. M. Sze, “Physics of Semiconductor devices,” John Wiley & Sons, 2nd Edition.
[4]Donald A. Neamen “Semiconductor physics & Devices Basic Principle,” second edition
[5]Hiroshi Ito, Satoshi Kodama, Yoshifumi Muramoto, Tomofumi Furuta, Tadao Nagatsuma, and Tadao Ishibashi, “High-Speed and High-Output InP–InGaAs Unitraveling-Carrier Photodiodes,” IEEE J. Quantum Electron., vol. 10, pp. 709–727, Jul./Aug. 2004
[6]J.-W. Shi, F.-M. Kuo, Chan-Shan Yang, S.-S. Lo, and Ci-Ling Pan, “Dynamic Analysis of Cascade Laser Power Converters for Simultaneous High-Speed Data Detection and Optical-to-Electrical dc Power Generation,” IEEE Trans. on Electron Device. vol. 58, pp. 2049-2056, July, 2011.
[7]X. Li, N. Li, S. Demiguel, J.C. Campbell, D. A. Tulchinsky, and K. J. Williams,“A
comparison of front and backside-illuminated high-saturation power partially depleted absorber photodetectors,” IEEE J. of Quantum Elec.,vol. 40,no. 9, pp.
[8]M. A. Taubenblatt, “Optical Interconnects for High-Performance Computing,” IEEE/OSA Journal of Lightwave Technology, vol. 30, No. 4, pp. 448-458, Feb., 2012.
[9]D. Bimberg, “Green Data and Computer Communication,” IEEE Photonic Society Meeting 2011, Arlington, VA, USA, Oct., 2011, pp. TuN3.
[10]K. Kurata, “High-Speed Optical Transceiver and Systems for Optical Interconnects,” Proc. OFC 2010, San Diego, CA, USA, March, 2010, pp. OThS3.
[11]J. A. Lott, A. S. Payusov, S. A. Blokhin, P. Moser, N. N. Ledentsov, and D. Bimberg, “Arrays of 850 nm photodiodes and vertical cavity surface emitting lasers for 25 to 40 Gbit/sec optical interconnects,” Phys. Status Solidi (C) 9, no. 2, pp. 290-293, Feb., 2012.
[12]N. Y. Li, C. L. Schow, D. M. Kuchta, F. E. Doany, B. G. Lee, W. Luo, C. Xie, X. Sun, K. P. Jackson, and C. Lei, “High-Performance 850 nm VCSEL and Photodetector Arrays for 25 Gb/s Parallel Optical Interconnects,” Proc. OFC 2010, San Diego, CA, USA, March, 2010, pp. OTuP2.
[13]W. Kobayashi, T. Tadokoro, T. Fujisawa, N. Fujiwara, T. Yamanaka, and F. Kano, “40-Gbps Direct Modulation of 1.3-m InGaAlAs DFB Laser in Compact To-CAN Package,” Proc. OFC 2011, Los Angele, CA, USA, March, 2011, pp. OWD2.
[14]E. Kapon and A. Sirbu, “Long-wavelength VCSELs: Power-efficient answer,” Nature Photonics, vol. 3, pp. 27-29, Jan., 2009.
[15]Y. Lee, D. Kawamura, T. Takai, K. Kogo, K. Adachi, T. Sugawara, N. Chujo, Y. Matsuoka, S. Hamamura, K. Yamazaki, Y. Ishigami, T. Takemoto, F. Yuki, H. Yamashita, and S. Tsuji, “25-Gb/s 100-m MMF Transmission Using a Prototype 1.3-m-Range CMOS-Based Transceiver for Optical Interconnections,” IEEE Photon. Technol. Lett., vol. 24, pp. 467-469, March, 2012.
[16]A. Mekis, S. Abdalla, D. Foltz, S. Gloeckner, S. Hovey, S. Jackson, Y. Liang, M. Mack, G. Masini, M. Peterson, T. Pinguet, S. Sahni, M. Sharp, P. Sun, D. Tan, L. Verslegers, B. P. Welch, K. Yokoyama, S. Yu, P. M. De Dobbelaere, “A CMOS photonics platform for High-Speed Optical Interconnects,” IEEE Photonic Society Meeting 2012, San Francisco, CA, USA, Sep., 2012, pp. TuQ2.
[17]Y. H. Huang, C. C. Yang, T. C. Peng, F. Y. Cheng, M. C. Wu, Y. T. Tsai, and C. L. Ho, “10-Gbps InGaAs p-i-n photodiodes with wide spectral range and enhanced visible spectral response,” IEEE Photon. Technol. Lett., vol. 19, pp. 339-341, May, 2007.
[18]X. Li, N. Li, S. Demiguel, X. Zheng, J. C. Campbell, H. H. Tan, and C. Jagadish, “A Partially Depleted Absorber Photodiode With Graded Doping Injection Regions,” IEEE Photon. Technol. Lett., vol. 16, pp.2326-2328, Oct., 2004.
[19]J.-W. Shi and C.-W. Liu, "Design and Analysis of Separate-Absorption-Transport-Charge-Multiplication Traveling-Wave Avalanche Photodetectors " IEEE/OSA Journal of Lightwave Technology, vol. 22, pp.1583-1590, June, 2004.
[20]K. Kato, “Ultrawide-Band/High-Frequency Photodetectors,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1265-1281, Jul., 1999.
[21]M. Levinshtein, S. Rumyantsev, and M. Shur, Handbook Series on Semiconductor Parameters, World Scientific, Singapore, 1996.
[22]Y.-S. Wu, J.-W. Shi, and P.-H. Chiu “Analytical Modeling of a High-Performance Near-Ballistic Uni-Traveling-Carrier Photodiode at a 1.55m Wavelength,” IEEE Photon. Technol. Lett., vol. 18, pp. 938-940, April, 2006.
[23]J.-W. Shi, F.-M. Kuo, and J. E. Bowers, “Design and Analysis of Ultra-High Speed Near-Ballistic Uni-Traveling-Carrier Photodiodes under a 50 Load for High-Power Performance,” IEEE Photon. Technol. Lett., vol. 24, pp. 533-535, April, 2012

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔