|
[1] J. Choi, B. J. Sheu, and O. T. C. Chen, “A monolithic GaAs receiver for optical interconnect systems,” IEEE J. Solid-State Circuits, vol. 29, no. 3, pp. 328–331, Mar. 1994. [2] C. Takano, K. Tanaka, A. Okubora, and J. Kasahara, “Monolithic integration of 5-Gb/s optical receiver block for short distance communication,” IEEE J. Solid-State Circuits, vol. 27, no. 10, pp. 1431–1433, Oct. 1992. [3] M. Bitter, R. Bauknecht, W. Hunziker, and H. Melchior, “Monolithic InGaAs-InP p-i-n/HBT 40-Gb/s optical receiver module,” IEEE Photon. Technol. Lett., vol. 12, no. 1, pp. 74–76, Jan. 2000. [4] H.-G. Bach, A. Beling, G. C. Mekonnen, and W. Schlaak, “Design and fabrication of 60-Gb/s InP-based monolithic photoreceiver OEIC’s and modules,” IEEE J. Sel. Topics Quantum Electron., vol. 8, no. 6, pp. 1445–1450, Nov./Dec. 2002. [5] D. Huber, R. Bauknecht, C. Bergamaschi, M. Bitter, A. Huber, T. Morf, A. Neiger, M. Rohner, I. Schnyder, V. Schwarz, and A. Jackel, “InP/InGaAs single HBT technology for photoreceiver OEIC’s at 40 Gb/s and beyond,” J. Lightw. Technol., vol. 18, no. 7, pp. 992–1000, Jul. 2000. [6] K. Nishi1, J. Fujikata, T. Ishi, D. Okamoto, and K. Ohashi, “Development of nano-photodiodes with a surface plasmon antenna,” in Proc. 20th Annu. Meeting IEEE Lasers and Electro-Optics Soc., 2007, pp. 574–575. [7] M. Jutzi, M. Berroth, G. W¨ohl, M. Oehme, and E. Kasper, “Ge-on-Si vertical incidence photodiodes with 39-GHz bandwidth,” IEEE Photon. Technol. Lett., vol. 17, no. 7, pp. 1510–1512, Jul. 2005. [8] Y. Kanga, M. Morsea, M. J. Panicciaa, M. Zadkab, Y. Saadb, G. Saridb, A. Pauchardc, W. S. Zaouid, H.-W. Chend, D. Daid, J. E. Bowersd, H.-D. Liue, D. C. Mcintoshe, X. Zheng, and J.-C. Campbell, “Monolithic Ge/Si avalanche photodiodes,” in Proc. 6th IEEE Int. Conf. Group IV Photonics, 2009, pp. 25–27. [9] M. Morse, O. Dosunmu, G. Sarid, and Y. Chetrit, “Performance of Ge-on-Si p-i-n photodetectors for standard receiver modules,” IEEE Photon. Technol. Lett., vol. 18, no. 23, pp. 2442–2444, Dec. 2006. [10] Y. Ishikawa, K. Wada, J. Liu, D. D. Cannon, H.-C. Luan, J. Michel, and L. C. Kimerling, “Strain-induced enhancement of near-infrared absorption in Ge epitaxial layers 69
grown on Si substrate,” J. Appl. Phys., vol. 98, no. 1, pp. 013501–013501-9, Jul. 2005. [11] T. Yin, R. Cohen, M. M. Morse, G. Sarid, Y. Chetrit, D. Rubin, and M. J. Paniccia, “40Gb/s Ge-on-SOI waveguide photodetectors by selective Ge growth,” presented at the Opt. Fiber Commun. Conf., San Diego, CA, Feb. 24, 2008. [12] C. L. Schow, L. Schares, S. J. Koester, G. Dehlinger, R. John, and F. E. Doany, “A 15-Gb/s 2.4-V optical receiver using a Ge-on-SOI photodiode and a CMOS IC,” IEEE Photon. Technol. Lett., vol. 18,no. 19, pp. 1981–1983, Oct. 2006. [13] L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photon., vol. 2, no. 4, pp. 226–229, 2008. [14] Chen, L. and Lipson, M., “Ultra-low capacitance and high speed germanium photodetectors on silicon,” Opt. Expr., vol. 17, pp. 7901–7906, 2009. [15] L. Vivien, J. Osmond, J. F´ed´eli, D. Marris-Morini, P. Crozat, J. Damlencourt, E. Cassan, Y. Lecunff, and S. Laval, “42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Expr., vol. 17, pp. 6252–6257, 2009. [16] S. Assefa, F. Xia, S. W. Bedell, Y. Zhang, T. Topuria, P. M. Rice, and Y. A. Vlasov, “CMOS-integrated 40 GHz germanium waveguide photodetector for on-chip optical interconnects,” presented at the Opt. Fiber Commun. Conf. (OFC), San Diego, CA, 2009. [17] R. J. McIntyre, “The distribution of gains in uniformly multiplying avalanche photodiodes: Theory,” IEEE Trans. Electron. Dev., vol. ED-19, no. 6, pp. 703–713, Jun. 1972. [18] Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. Sfar Zaoui, J. E. Bowers, A. Beling, D. C. Mcintosh, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,”Nat. Photon., vol. 3, no. 1, pp. 59–63, 2008. [19] G. Kim, I. G. Kim, J. H. Baek, and O. K. Kwon, “Enhanced frequency response associated with negative photoconductance in an InGaAs/InAlAs avalanche photodetector,” Appl. Phys. Lett., vol. 83, no. 6, pp. 1249–1251, 2003. [20] J. W. Shi, Y. S. Wu, Z. R. Li, and P. S. Chen, “Impact-ionization-induced bandwidth-enhancement of a Si-SiGe based avalanche photodiode operating at a wavelength of 830 nm with a gain-bandwidth product of 428 GHz,” IEEE Photon. Technol. Lett., vol. 19, no. 7, pp. 474–476, Apr. 2007. [21] C. Rooman, D. Coppee, and M. Kuijk, “Asynchronous 250 Mb/s optical receivers with integrated detector in standard cmos technology,” IEEE J. Solid State Circuits, vol. 35, 70
pp. 953–958, 2000. [22] W.-Z. Chen, S. H. Huang, G. W. Wu, C.-C. Liu, and Y.-T. Huang,“A 3.125 Gbps CMOS fully integrated optical receiver with adaptive analog equalizer,” in Proc. IEEE Asian Solid-State Circuits Conf. (A-SSCC), 2007, pp. 396–399. [23] M.-J. Lee and W.-Y. Choi, “A silicon avalanche photodetector fabricated with standard CMOS technology with over 1 THz gain-band-width product,” Opt. Exp., vol. 18, pp. 24189–24194, 2010. [24] W.-Z. Chen and S.-H. Huang, “A2.5 Gbps CMOS fully integrated optical receiver with lateral PIN detector,” in Proc. Custom Integrated Circuits Conf. (CICC), 2077, pp. 293–296. [25] B. Ciftcioglu, L. Zhang, J. Zhang, J. R. Marciante, J. Zuegel, R. Sobolewski, and H. Wu, “Integrated silicon PIN photodiodes using deep N-well in a standard 0.18-µm CMOS technology,” J. Lightw. Technol., pp. 3303–3313, 2009. [26] K. Iiyama, H. Takamatsu, and T. Maruyama, “Hole-injection-type and electron-injection-type silicon avalanche photodiodes fabricated by standard 0.18-µm CMOS process,” IEEE Photon. Technol. Lett., vol.22, pp. 932–934, 2010. [27] S. M. Csutak, J. D. Schaub, W. E. Wu, R. Shimer, and J. C. Campbell, “CMOS-compatible high-speed planar silicon photodiodes fabricated on SOI substrates,” IEEE J. Quantum Electron., vol. 38, pp. 193–196,2002. [28] C. L. Schow, R. Li, J. D. Schaub, and J. C. Campbell, “Design and implementation of high-speed planar Si photodiodes fabricated on SOI substrates,” IEEE J. Quantum Electron., vol. 35, pp. 1478–1482, 1999. [29] B. Yang, J. D. Schaub, S. M. Csutak, D. L. Rogers, and J. C. Campbell, "10-Gb/s all-silicon optical receiver," IEEE Photonics Technology Letters, vol. 15, no.5, pp. 745-747, May 2003. [30] W. K. Huang, Y. C. Liu, and Y. M. Hsin, “Bandwidth enhancement in Si photodiode by eliminating slow diffusion photocarriers,” Electron. Lett., vol. 44, pp. 52–53, 2008. [31] F. Tavernier and M. Steyaert, “A 5.5 Gbit/s optical receiver in 130 nm CMOS with speed-enhanced integrated photodiode,” in Proc. ESSCIRC, 2010, pp. 542–545. [32] S.-H. Huang, W.-Z. Chen, Y.-W. Chang, and Y.-T. Huang, “A 10-Gb/s OEIC with meshed spatially-modulated photo detector in 0.18- µmCMOS technology,” IEEE J. Solid-State Circuits, vol. 46, pp. 1158–1169, 2011. [33] J.-S. Youn, H.-S. Kang, M.-J. Lee, K.-Y. Park, and W.-Y. Choi, “High-speed CMOS 71
integrated optical receiver with an avalanche photodetector,” IEEE Photon. Technol. Lett., vol. 21, pp. 1553–1555, 2009. [34] K. Iiyama, N. Sannou, and H. Takamatsu, “Avalanche amplification in silicon lateral photodiode fabricated by standard 0.18 µm CMOS process,” IEICE Trans. Electron., vol. E91-C, pp. 1820–1823, 2008. [35] K. Iiyama, H. Takamatsu, and T. Maruyama, “Silicon lateral avalanche photodiodes fabricated by standard 0.18 µm complementary metal-oxide-semiconductor process,” in Proc. Int. Conf. Solid State Devices Mater. (SSDM 2009), pp. 510–511. [36] H. S. Kang, M. J. Lee, and W. Y. Choi, “Si avalanche photodetectors fabricated in standard complementary metal oxide-semiconductor process,” Appl. Phys. Lett., vol. 90, pp. 151118.1–151118.3, 2007. [37] W. K. Huang, Y. C. Liu, and Y. M. Hsin, “A high-speed and high-responsivity photodiode in standard CMOS technology,” IEEE Photon.Technol. Lett., vol. 19, pp. 197–199, 2007. [38] F.-P. Chou, G.-Y. Chen, C.-W. Wang, Y.-C. Liu, W.-K. Huang, and Y.-M. Hsin, “Silicon photodiodes in standard CMOS technology,” IEEE J. Sel. Topics Quantum Electron., vol. 17, pp. 730–740, 2011. [39] Chia-Sung Chiu, Kun-Ming Chen, Guo-Wei Huang, Ming-I. Chen, Yu-Chi Yang, and Kai-Li Wang, “Capacitance Characteristics Improvement and Power Enhancement for RF LDMOS Transistors Using Annular Layout Structure,” IEEE Transactions on microwave theory and techniques, Vol. 59, no. 3, March 2011 [40] P. Lopez, M. Oberst, H. Neubauer, and J. Hauer, “Performance analysis of high-speed MOS transistors with different layout styles,” in Proc.Int. Circuits Syst. Conf., May 2005, pp. 3688–3691. [41] A. Rochas, G. Ribordy, B. Furrer, P. Besse, and R. Popovic, “Low-noise silicon avalanche photodiodes fabricated in conventional CMOS technologies,” IEEE Trans. Electron Devices, vol. 49, no. 3, 387, 2002 [42] Andrew Pan, D-S Pan, and C- O Chui, “Mechanism for excess noise in mixed tunneling and avalanche breakdown of silicon,” Appl. Phys. Lett. 96, 263503, 2010 [43] Lucio Pancheri, Mauro Scandiuzzo, David Stoppa, and Gian-Franco Dalla Betta, “Low-Noise Avalanche Photodiode in Standard 0.35-µm CMOS Technology,” IEEE Trans. Electron Devices, vol. 55, 457, 2008 [44] C-C Chiu and J-W Hong, “Amorphous Separated Absorption and Multiplication Superlattice-like Avalanche Photodiodes (Amorphous SAM-SAPD’s)”, Master Thesis, Chungli, Taiwan, National Central University, 2004 [45] T. Takeuchi, T. Nakata, K. Makita, and M. Yamaguchi, “High-speed, high-power and high-efficiency photodiodes with evanescently coupled graded-index waveguide,” Electron. Lett., vol. 36, pp. 972–973, May 2000. [46] J.W. Shi, P.-H. Chiu, F.-H. Huang, Y.-S. Wu, Ja-Yu Lu, C.-K. Sun, C.-W. Liu, P.-S. Chen, “Si/SiGe-based edge-coupled photodiode with partially p-doped photoabsorption layer for high responsivity and high-power performance,” IEEE Applied Physics Letters, vol. 88, issue. 19, pp. 193506-193506-3, May 2006. [47] J. Wang, W. Y. Loh, K. T. Chua, H. Zang, Y. Z. Xiong, T. H. Loh, M. B. Yu, S. J. Lee, Guo-Qiang Lo, and D.-L. Kwong, “Evanescent-Coupled Ge p-i-n Photodetectors on Si-Waveguide With SEG-Ge and Comparative Study of Lateral and Vertical p-i-n Configurations, ” IEEE Electron Device Letters, vol. 29, issue.5, pp. 445-448, May 2008. [48] Behrooz Nakhkoob, Sagar Ray, and Mona M. Hella, “High speed photodiodes in standard nanometer scale CMOS technology: a comparative study,” Optics Express, Vol. 20, no. 10, pp.11256-11270, May 2012. [49] S. B. Alexander, Optical Communication Receiver Design (SPIE Optical Engineering Press, 1997). [50] J. G. Su, H. M. Hsu, S. C. Wong, C. Y. Chang, T. Y. Huang, and J. Y. C. Sun, “Improving the RF performance of 0.18-µm CMOS with deep n-well implantation,” IEEE Electron. Device Lett., vol. 22, no. 10, pp. 481–483, Oct. 2001.
|