|
[1] D. Amadori, L. Gosse, G. Guerra, Global BV entropy solutions and uniqueness for hyperbolic systems of balance laws, Arch. Rational Mech. Anal. 162 (2002) pp. 327-366. [2] Y. Chang, J. M. Hong, C.-H. Hsu, Globally Lipschitz continuous solutions to a class of quasilinear wave equations, J. Diff. Equ. 236 (2007), pp. 504-531. [3] G. Q. Chen, C. D. Levermore and T.-P. Liu, Hyperbolic conservation laws with stiff relaxation terms and entropy, Comm. Pure Appl. Math. 47 (1993), pp. 787-830. [4] C. M. Dafermos, Hyperbolic conservation laws in continuum physics, Series of Comprehensive Studies in Mathematics, Vol. 325, Springer. [5] C. M. Dafermos, L. Hsiao, Hyperbolic systems of balance laws with inhomogeneity and dissipation, Indiana U. Math. J. 31 (1982), pp. 471-491. [6] G. Dal Maso, P. LeFloch, F. Murat, Definition and Weak Stability of Nonconservative Products, J. Math. Pures Appl. 74 (1995), pp. 483-548. [7] P. Dionne, Sur les probl`emes de Cauchy hyperboliques bien pos´es, J. d’Analyse Math. 10 (1962), pp. 1-90. [8] J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure Appl. Math. 18 (1965), pp. 697-715. [9] J. Goodman, Nonlinear asymptotic stability of viscous shock profiles for conservation laws, Arch. Rational Mech. Anal. 95 (1986), pp. 325-344. [10] J. Groah, J. Smoller, B. Temple, Shock Wave Interactions in General Relativity, Monographs in Mathematics, Springer, Berlin, New York, 2007. [11] D. Helbing, Traffic and related self-driven many-particle systems, Rev. Modern Phy. 73 (2001), pp. 1067-1141. [12] J. M. Hong, An extension of Glimm’s method to inhomogeneous strictly hyperbolic systems of conservation laws by “weaker than weak” solutions of the Riemann problem, J. Diff. Equ. 222 (2006), pp. 515-549. [13] J. M. Hong, C.-H. Hsu, Bo-Chih Huang, and Tzi-Sheng Yang, Geometric singular perturbation approach to the existence and instability of stationary waves for viscous traffic flow models, preprint. [14] J. M. Hong, C.-H. Hsu, Y.-C. Su, Global solutions for initial-boundary value problem of quasilinear wave equations, J. Diff. Equ. 245 (2008), pp. 223-248. [15] J. M. Hong, P. G. LeFloch, A version of Glimm method based on generalized Riemann problems, J. Portugal Math., Vol. 64, (2007) pp. 199-236. [16] J. M. Hong, B. Temple, A bound on the total variation of the conserved quantities for solutions of a general resonant nonlinear balance law, SIAM J. Appl. Math., Vol. 64, No. 3 (2004) pp. 819-857. [17] T. J. R. Hughes, T. Kato, and J. E. Marsden, Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity, Arch. Rational Mech. Anal. 63 (1976), pp. 273-294. [18] S.-B. Hsu, Ordinary differential equations with applications, World Scientific, 2006. [19] E. Isaacson, B. Temple, Nonlinear resonant in inhomogenous systems of conservation laws, Cotemp. Math., 108, 1990. [20] E. Isaacson, B. Temple, Convergence of 2 × 2 Godunov method for a general resonant nonlinear balance law, SIAM. J. Appl. Math. Vol. 55, No 3 (1995) pp. 625-640. [21] Wen-Long Jin, A kinematic wave theory of lane-changing traffic flow, to appear in Transportation research, Part B. [22] S. Jin and M. A. Katsoulakis, Hyperbolic systems with supercharacteristic relaxations and roll waves, SIAM J. Appl. Math. 61 (2000), pp. 273-292. [23] S. Jin and Z. Xin, The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Comm. Pure Appl. Math. 48 (1995), pp. 555-563. [24] W. L. Jin and H. M. Zhang, The formation and structure of vehicle clusters in the Payne- Whitham traffic flow model, Transportation Research, B. 37 (2003), pp. 207-223. [25] C. Jones, R. Gardner and T. Kapitula, Stability of traveling waves for non-convex scalar viscous conservation laws, Comm. Pure Appl. Math. 46 (1993), pp. 505-526. [26] T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Rational Mech. Anal. 58 (1975), pp. 181-205. [27] B. Keyfitz, H. Kranzer, A system of non-strictly hyperbolic conservation laws arising in elasticity theory, Arch. Ration. Mech. Anal., 72 (1980), pp. 219-241. [28] S. N. Kruzkov, First order quasilinear equations with several space variables, Mat. USSR Sb., 10 (1970), pp. 217-243. [29] W. Knospe, L. Santen, A. Schadschneider and M. Schreckenberg, Single-vehicle data of highway traffic: Microscopic description of traffic phases, Phys. Rev. E 65, 056133 (2002), pp. 1-16. [30] P. D. Lax, Hyperbolic system of conservation laws, II, Comm. Pure Appl. Math., 10 (1957), pp. 537-566. [31] P. D. Lax, Hyperbolic system of conservation laws and mathematical theory of shock waves., Conf. Board Math. Sci., 11, SIAM, 1973. [32] P. G. LeFloch, Entropy Weak Solutions to Nonlinear Hyperbolic Systems Under Nonconservative Form, Comm. Part. Diff. Eq., 13 (1988), pp 669-727. [33] P. G. LeFloch, T.-P. Liu, Existence theory for nonlinear hyperbolic systems in nonconservative form, Forum Math. 5 (1993), pp. 261-280. [34] T. Li, Global solutions of nonconcave hyperbolic conservation laws with relaxation arising from traffic flow, J. Differential Equations 190 (2003), pp. 131-149. [35] T. Li, Nonlinear dynamics of traffic jams, Physica D 207 (2005), pp. 41-51. [36] T. Li, Stability of traveling waves in quasi-linear hyperbolic systems with relaxation and diffusion, SIAM J. Math. Anal. 40 (2008), pp. 1058-1075. [37] T.-P. Liu, Quasilinear hyperbolic systems, Comm. Math. Phys., 68 (1979), pp. 141-172. [38] T.-P. Liu, Admissible solutions of hyperbolic conservation laws, Mem. Amer. Math. Soc. 30 (1981). [39] T.-P. Liu, Hyperbolic conservation laws with relaxation, Comm. Math. Phys. 108 (1987), pp. 153-175. [40] H. L. Liu, Asymptotic stability of shock profiles for nonconvex convection-diffusion equation, Appl. Math. Lett. 10 (1997), pp. 129-134. [41] H. L. Liu, Relaxation Dynamics, Scaling Limits and Convergence of Relaxation Schemes, Analysis and numerics for conservation laws, pp. 453-478, Springer, Berlin, 2005. [42] T. Li and H. L. Liu, Stability of a traffic flow model with nonconvex relaxation, Comm. Math. Sci. 3 (2005), pp. 101-118. [43] H. L. Liu and J. Wang, Asymptotic stability of traveling wave solutions of a hyperbolic system with relaxation terms, Beijing Math. 2 (1996), pp. 119-130. [44] M. J. Lighthill and G. B. Whitham, On kinematic waves: II. A theory of traffic flow on long crowded roads, Proceedings of the Royal Society A 229 (1955), pp. 317-345. [45] H. L. Liu, C. W. Woo and T. Yang, Decay rate for traveling waves of a relaxation model, J. Differential Equations 134 (1997), pp. 343-367. [46] H. L. Liu, J. Wang and T. Yang, Stability for a relaxation model with a nonconvex flux, SIAM J. Math. Anal. 29 (1998), pp. 18-29. [47] C. Lattanzio and P. Marcati, The zero relaxation limit for the hydrodynamic Whitham traffic flow model, J. Differential Equations 141 (1997), pp. 150-178. [48] M. Luskin and B. Temple, The existence of a global weak solution to the non-linear waterhammer problem, Comm. Pure Appl. Math. 35 (1982), pp. 697-735. [49] A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Applied Mathematical Sciences 53, Springer-Verlag, New York, 1984. [50] A. Matsumura and K. Nishihara, Asymptotic stability of traveling waves of scalar viscous conservation laws with non-convex nonlinearity, Comm. Math. Phys. 165 (1994), pp. 83-96. [51] M. Mei, Stability of shock profiles for non-convex scalar conservation laws, Math. Models Method Appl. Sci. 5 (1995), pp. 279-296. [52] T. Nishida, Nonlinear hyperbolic equations and related topics in fluid dynamics, Publ. Math. d’Orsay 78-02, D´epartment de Math´ematique, Universit´e Paris-sud, Orsay, 1978. [53] T. Nishida, J. Smoller, Mixed problems for nonlinear conservation laws, J. Diff. Equ. 23 (1977), pp. 244-269. [54] O. A. Oleinik, Discontinuous solutions of non-linear different equations, Uspekhi Math. Nauk(N.S.), 12 (1957), pp. 3-73. (Trans. Amer. Math. Soc., Ser. 2, 26, pp. 172-195.) [55] H. J. Payne, Models of freeway traffic and control, Simulation Councils Proceedings Series: Mathematical Models of Public Systems, vol. 1, 51-61, G.A. Bekey (Ed.), 1971. [56] P. I. Richards, Shock waves on the highway, Operations Research 4 (1956), pp. 42-51. [57] D. Sattinger, On the stability of waves of nonlinear parabolic systems, Adv. Math. 22 (1976), pp. 312-355. [58] J. Schauder, Das Anfangswertproblem einer quasilinearen hyperbolischen Differentialgleichung zweiter Ordnung in beliebiger Anzahl von unabh¨angigen Vera¨nderlichen, Fund. Math. 24 (1935), pp. 213-246. [59] S. Schochet, The instant-response limit in Whitham’s nonlinear traffic-flow model: uniform well-posedness and global existence, Asymptotic Analysis 1 (1988), pp. 263-282. [60] J. Smoller, Shock Waves and Reaction-Diffusion Equations, 2nd ed., Springer-Verlag, Berlin, New York, 1994. [61] S. L. Sobolev, Sur les ´equations aux d´eriv´ees partielles hyperboliques non-lin´eaires, Edizioni Cremonese, Rome, 1961. [62] B. Temple, Global solution of the Cauchy problem for a class of 2 × 2 nonstrictly hyperbolic conservation laws, Adv. Appl. Math., 3 (1982), pp. 335-375. [63] T.-Q. Tang, C.-Y. Li, H.-J. Huang, and H.-Y. Shang, Macro modeling and analysis of traffic flow with road width, J. Cent. South Univ. Technol. 18 (2011), pp. 1757-1764. [64] G. B. Whitham, Linear and Nonlinear Waves, Wiley, New York, 1974. [65] Y. Yamada, Quasilinear wave equations and related nonlinear evolution equations, Nagoya Math. J. 84 (1981), pp. 31-83. [66] H. M. Zhang, A theory of nonequilibrium traffic flow, Transportation Res. Part B 32 (1998), pp. 485-498. [67] H. M. Zhang, Driver memory, traffic viscosity and a viscous vehicular traffic flow model, Transportation Res. Part B 37 (2003), pp. 27-41. [68] C. J. Zhu, Asymptotic behavior of solutions for p-system with relaxation, J. Differential Equations 180 (2002) pp. 273-306
|