(34.204.201.220) 您好！臺灣時間：2021/04/19 16:53

### 詳目顯示:::

:

• 被引用:0
• 點閱:81
• 評分:
• 下載:2
• 書目收藏:0
 於此篇文章中我們主要探討並研究一個關於交通流的非線性雙曲型守恆定律。此交通流的模型包含著一個能夠表示車道變換之車輛的強度的參數。這模型可以重寫成一個含有源項的守恆定律的形式（亦即此守恆定律方程式之等號右側帶有非零項）。此文章亦會展示幾種不同案例的車道變換強度之數值計算結果。
 In this thesis we study a nonlinear hyperbolic balance law arise from traffic flow. The model of traffic flow consists of a parameter representing the intensity of lane-changing of vehicles. The model is rewritten as a balance law with source terms. The numerical results are given for different cases of lane-changing intensities.
 中文摘要 ……………………………………………………… i英文摘要 ……………………………………………………… ii目錄 ……………………………………………………… iii論文本文 ……………………………………………………… 11. Introduction……………………………………… 22. Model of lane-changing traffic flow………… 53. Finite difference method………………………. 74. Numerical solutions……………………………. 11Reference ……………………………………………………… 17
 [1] G. Chen and J. Glimm, Global solution to the compressible Euler equations with geometrical structure, Comm. Math. Phys., 179(1996), page 153-193.[2] R. Courant and K.O. Friedrichs, Supersonic flow and shock waves, John Wiley & Sons, New York, 1948.[3] G. Dal Maso, P.G. LeFloch, and F. Murat, Definition and weak stability of nonconservative products, J. Math. Pures Appl. 74(1995), pp. 483-548.[4] J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure Appl. Math. 18(1965), pp. 697-715.[5] S.K. Godunov, A difference method for numerical calculations of discontinu- ous solutions of the equations of hydrodynamics, Mat. Sb. 47(1959), in Rus- sion, pp. 271-306.[6] J. Hong, The Glimm scheme extended to inhomogeneous systems, Doctoral Thesis, UC-Davis.[7] E. Isaacson, Global solution of a Riemann problem for a non-strictly hyper- bolic system of conservation laws arising in enhanced oil recovery, Rockefeller University preprint.[8] E. Isaacson, D. Marchesin, B. Plohr, and B. Temple The Riemann problem near a hyperbolic singularity: the classification of solutions of quadratic Rie- mann problems I, SIAM J. Appl. Math.,48(1988), pp. 1009-1052.[9] E. Isaacson, B. Temple, The structure of asymptotic states in a singular sys- tem of conservation laws, Adv. Appl. Math., 11(1990), pp. 205-219.[10] E. Isaacson, B. Temple, Analysis of a singular hyperbolic system of conserva- tion laws, Jour. Diff. Equn., 65(1986), pp. 250-268.[11] E. Isaacson, B. Temple, Examples and classification of non-strictly hyperbolic systems of conservation laws, Abstracts of AMS, January 1985.  50[12] E. Isaacson, B. Temple, Nonlinear resonance in systems of conservation laws, with E. Isaacson, SIAM Jour. Appl. Anal., 52, 1992, pp. 1260-1278.[13] E. Isaacson, B. Temple, Convergence of the 2 × 2 Godunov method for a general resonant nonlinear balance law, SIAM Jour. Appl. Math., 55, No. 3, pp. 625-640, June 1995.[14] B. Keyfitz and H. Kranzer, A system of non-strictly hyperbolic conservation laws arising in elasticity theory, Arch. Rat. Mech. Anal., 72(1980), pp.219- 241.[15] S.N. Kruzkov, First order quasilinear equations with several space variables, Mat. USSR Sb. 10 (1970), pp.217-243.[16] P.D. Lax, Hyperbolic systems of conservation laws, II, Comm. Pure Appl. Math. 10(1957), pp. 537-566.[17] P.D. Lax and B. Wendroff, Systems of Conservation laws, Comm. Pure Appl. Math., 13 (1960), pp. 217-237.[18] L. Lin, J. Wang and B. Temple, A comparison of convergence rates for Go- dunov’s method and Glimm’s method in resonant nonlinear systems of con- servation laws, with L.Lin and J. Wang., SIAM J. Numer. Anal., 32, No. 3, pp. 824-840.[19] L. Lin, J. Wang and B. Temple, Suppression of oscillations in Godunov’s method for a resonant non-strictly hyperbolic system, SIAM J. Numer. Anal., 32, No. 3, June 1995.[20] T.P. Liu, Quasilinear hyperbolic systems, Comm. Math. Phys., 68(1979), pp. 141-172.[21] T.P. Liu, Resonance for a quasilinear hyperbolic equation, J. Math. Phys. 28 (11), (1987), pp. 2593-2602.[22] D. Marchesin and P.J. Paes-Leme, A Riemann problem in gas dynamics with bifurcation, PUC Report MAT 02/84, 1984.[23] O.A. Oleinik, Discontinuous solutions of non-linear differential equations, Us- pekhi Mat. Nauk (N.S.), 12(1957),no.3(75), pp. 3-73 (Am. Math. Soc. Trans., Ser. 2, 26, pp. 195-172.)[24] J. Smoller, Shock waves and reaction diffusion equations, Springer-Verlag, Berlin, New York, 1983.  51[25] B. Temple, Global solution of the Cauchy problem for a class of 2 × 2 non- strictly hyperbolic conservation laws, Adv. in Appl. Math., 3(1982), pp. 335- 375.[26] A. Tveito and R. Winther, Existence, uniqueness and continuous depen- dence for a system of hyperbolic conservation laws modelling polymer flooding, Preprint, Department of Informatics, University of Oslo, Norway, January, 1990.[27] Wen-Long Jin *, A kinematic wave theory of lane-changing traffic flow, November 25, 2009.[28] Wen-Long Jin *, A multi-commodity Lighthill-Whitham-Richards model of lane-changing traffic flow, Department of Civil and Environmental Engineering, University of California, 2012.
 電子全文
 國圖紙本論文
 連結至畢業學校之論文網頁點我開啟連結註: 此連結為研究生畢業學校所提供，不一定有電子全文可供下載，若連結有誤，請點選上方之〝勘誤回報〞功能，我們會盡快修正，謝謝！
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 無相關論文

 無相關期刊

 1 退漿水洗設備創新設計之研究 2 Vector Fields With Given Vorticity, Divergence And The Normal Trace 3 基於重疊時間切片影像之車道線追蹤與分類 4 應用管制圖於車內道路偏移與側邊盲區警示介面設計之優使性評估 5 動態單攝影機多車道車牌辨識系統 6 應用適應性模型預測控制於車道維持系統之設計 7 以影像為基礎之公路車道偵測系統之研究 8 在複雜環境下之道路線截取方法 9 基於車道線辨識之前車偵測及加速 10 行車車道變換安全偵測系統 11 基於時間序列之道路線種類辨識 12 駕駛輔助於車道偏離與前車防撞警示技術 13 Mathematical Modeling and Numerical Simulation for Transport Phenomena in Porous Medium 14 An Iteration Method for the Riemann Problem of Some Degenerate Hyperbolic Balance Laws 15 Nonlinear Balance Laws with Rotational Source Terms

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室