|
[1] C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, 2nd edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathemati- cal Sciences], 325. Springer-Verlag, Berlin, 2005. [2] J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure Appl. Math. 18 (1965), pp. 697-715. [3] Jonathan Goodman, Zhouping Xin, Viscous Limits for Piecewise Smooth Solutions to System of Conservation Laws, Arch. Rational Mech. Anal. 121 (1992), pp. 235-265. [4] Benoit Cushman-Roisin,Jean-Marie Beckers, Introduction to Geophysical Fluid Dynamics, (2007). [5] J. M. Hong, C. H. Hsu, Y. C. Su, Global solutions for initial-boundary value problem of quasilinear wave equations, J. Di. Equ. 245 (2008), pp. 223-248. [6] P. D. Lax, Hyperbolic system of conservation laws, II, Comm. Pure Appl. Math. 10 (1957), pp. 537-566. [7] J. Smoller, Shock Waves and Reaction Diusion Equations, Springer-Verlag, New York, Berlin (1983). [8] B. Whitham, Linear and nonlinear waves. New York, John Wiley, 1974.
|