(3.238.174.50) 您好!臺灣時間:2021/04/18 17:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳冬彥
研究生(外文):Dong-Yan Wu
論文名稱:超塑成形製作機翼整流罩之模具設計及分析
論文名稱(外文):Mold Design and Analysis in Superplastic Forming the Airliner Wing’s Fairing Cover
指導教授:李雄李雄引用關係
指導教授(外文):Shyong Lee
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:172
中文關鍵詞:超塑成形5083鋁合金模具設計製程設計
外文關鍵詞:Superplastic FormingAluminum alloy 5083Mold DesignManufacturing Process Design
相關次數:
  • 被引用被引用:0
  • 點閱點閱:261
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
本論文即以飛機製造業生產之鋁合金蒙皮零件“機翼前緣整流罩”所使用的模具與製程來做研究的方向。一般超塑成形製程多以平鈑直接吹氣成形,成形模具深寬比較小,而本研究之機翼前緣整流罩所設計出來的模具深寬比較大,無法使用平鈑吹製製程,為了改善深寬比,在執行超塑成形之前,先將鋁合金5083鈑材進行預成形折彎加工。折彎加工目的為了使鈑材在尚未執行超塑成形前,即可預先縮短材料與成形模具之間的成形距離,使工件能順利完成超塑成形。另外也設計出可減少成形距離的製程,如兩階段氣吹成形製程及熱引伸輔助製程等。
由於全尺寸實驗所需耗費的成本較大,如電費、鋁合金鈑材等,加上實驗時間須配合漢翔生產線的空餘時間,所以能實驗的次數有限,為了減少成本以及增加實驗效率,本研究將原模具設計成縮小版尺寸,並對母模成形輪廓做設計,如雙峰等高設計、V形底部R角放大設計、V形底端降低設計等,分析各製程及模具設計的優劣,設計出最佳的成形模具製程。

The study focuses on the mold and manufacturing process of aluminum alloy spare parts “airliner wing’s fairing cover” for aircraft manufacture industry. Superplastic forming manufacturing process usually using aluminum alloy plate and the molding contour is designed by low aspect-ratio. In this study, the airliner wing’s fairing cover molding contour is designed by high aspect-ratio. The aluminum alloy plates can’t be directly used for superplastic forming process. In order to improve the design of high aspect ratio, the SP5083 sheets bended for a preforming before superplastic forming process. The bending preforming in order to reduce the forming distance between SP5083 sheet and mold, then the spare parts fairing cover can be successfully produced. And there are several designs to reduce the forming distance manufacturing process, such as Two-Stage Superplastic Forming and Hot Draw Mechanical Preforming, etc.
Because of large-sized mold and the experments need to comsume large cost, such as electricity bill and aluminum sheet meterials, etc. And the experiment coordinate with AIDC production line free time. So the experiment have restriction on the number. In order to reduce costs and increase the efficiency of the experiment. In this study, the mold is designed a small-sized model. And the mold contour also is designed, different model such as Two-cavity designed have same depth, enlarge the bottom of the V-shape preforming curvature radius, bottom of the V-shape preforming designed lower, etc. Analyzing the merits of the manufacturing process and mold design and choosing the best mold and manufacturing process.

摘要 i
Abstract ii
誌 謝 iii
目錄 iv
圖目錄 viii
表目錄 xvii
符號說明 xx
第一章 緒論 1
1-1 前言 1
1-2 超塑性成形理論與應用 2
1-2-1 超塑性(Superplasticity) 2
1-2-2 超塑材料之性質與必要條件 4
1-2-3 超塑材料之應用方向 8
1-3 超塑成形製程方式簡介 10
1-3-1 一般超塑性與傳統機械加工方式比較 10
1-3-2 一般超塑性缺點 11
1-4 超塑成形製程方法與工作原理 12
1-4-1 傳統超塑成形(CSPF)的工作原理 12
1-4-2 兩階段超塑成形(TSGF)的工作原理 13
1-4-3 熱引伸機械成形(HDMP)的工作原理 14
1-5 文獻回顧 14
1-5-1 超塑成形使用之製程方法 14
1-5-1-1 傳統超塑成形(CSPF)製程方法 16
1-5-1-2 兩階段超塑成形(TSGF)製程方法 17
1-5-1-3 熱引伸機械成形(HDMP)製程方法 18
1-5-1-4 各製程結果討論 21
1-5-2 熱引伸機構之夾料板力量 23
1-5-2-1 夾料板面積與夾料力量探討 24
1-5-3 全尺寸工件之室溫引伸輔助氣壓成形製程 26
1-5-3-1 全尺寸工件介紹 26
1-5-3-2 室溫引伸輔助氣壓成形實驗結果 30
1-6 研究動機及目的 34
第二章 理論探討 35
2-1 成型理論 35
2-1-1 超塑成形組成方程式 35
2-1-2 長形方盒壓力-時間計算理論 37
2-1-3 圓錐形體壓力-時間計算理論 39
2-2 空孔形成機制 41
2-2-1 空孔成核 41
2-2-2 空孔結合 43
第三章 實驗架構與實驗方法 44
3-1 實驗設備 44
3-1-1 全尺寸實驗設備 44
3-1-2 縮小版實驗設備 49
3-1-3 通用實驗設備 52
3-2 實驗材料 57
3-3 厚度減薄估算方法 58
3-3-1 成品厚度估算 58
3-3-2 減薄率 59
3-4 V形折彎預成形方法 60
3-5 製程與模具設計 63
3-5-1 兩階段氣壓成形製程 66
3-5-2 全尺寸縮小四倍熱引伸製程 76
3-5-3 全尺寸縮小四倍母模雙峰等高模具設計 86
3-5-4 全尺寸縮小四倍母模V形底端降低模具設計 101
3-6 實驗流程 107
第四章 實驗結果與討論 108
4-1 全尺寸模具 108
4-1-1 兩階段氣壓成形實驗結果與討論 108
4-1-2 全尺寸模具結論 112
4-2 原尺寸縮小四倍模具 113
4-2-1 熱引伸輔助氣壓成形製程 113
4-2-2 母模雙峰等高模具 123
4-2-3 母模V形底端降低模具 131
4-2-4 原尺寸縮小四倍模具結論 138
第五章 結論與未來展望 139
5-1 結論 139
5-2 未來展望 141
參考文獻 142

【1】A.J. Barnes, Superplastic Forming 40 Years and Still Growing, Journal of Materials Engineering and Performance Vol. 16, pp. 450-451, 2007.
【2】S. Hori, M. Tokizane, N. Furushiro, Superplasticity in Advanced Materials. The Japan Society of Research on Superplasticity, Osaka Japan, 1991.
【3】A.K. Ghosh ang C.H. Hamiton, Superplastic Forming and Diffusion Bonding, Seminar Course, pp. 25&205-213, Taiwan, 1990.
【4】R. Pearce, Superplasticity, NATO/AGARD Lecture Series, 1987.
【5】F. Yang, W. Yang, Kinetics and size effect of grain rotations in nanocrystals with rounded triple junctions, Scripta Materialia, vol. 61, pp. 919-922, 2009.
【6】C.M. Hu, C.M. Lai, P.W. Kao, N.J. Ho, J.C. Huang, Quantitative measurements of small scaled grain sliding in ultra-fine grained Al–Zn alloys produced by friction stir processing, Materials Characterization, vol. 61, pp. 1043-1053, 2010.
【7】K. Higashi, M. Mabuchi, T.G. Langdon, High Strain Rate Superplasticity in Metallic Materials and the Potential for Ceramic Materials, ISIJ International, vol. 36, pp. 1423-1438, 1996.
【8】張書省,超塑性鋁合金5083快速成形研究,國立中央大學,碩士論文,民國89年。
【9】N. Chandra, Constitutive behavior of superplastic materials, International Journal of Non-Linear Mechanics, vol. 37, pp. 461-484, 2002.
【10】M. Kawazoe, T. shibata, T. Mukai, K. Higashi, Elevated temperature mechanical properties of A 5056 Al-Mg alloy processed by equal-channel-angular-extrusion, Scripta Materialia, vol. 36, pp. 699-705, 1997.
【11】J.W. Edington, Microstructural aspects of superplasticity, Metallurgical Transactions A, vol. 13, pp. 703-715, 1982.
【12】C.H. Hamilton, Superplasticity, NATO/AGARD Lecture Series, Chap2, 1989.
【13】S. Kalpadjian, Manufacturing Processes for Engineering Materials, Chap7, pp. 444-446.
【14】Furukawa-Sky Aluminum Corp, Superplastic 5083 Aluminum Alloy Sheet “ALNOVI-1”was Approved by Airbus, Furukawa Review, 2004.
【15】L. Carrino, G. Giuliano, G. Napolitano, A posteriori optimisation of the forming pressure in superplastic forming processes by the nite element method, Finite Elements in Analysis and Design, vol. 39, pp. 1083-1093, 2003.
【16】G. Luckey Jr., P. Friedman, K. Weinmann, Design and experimental validation of a two-stage superplastic forming die, Journal of materials processing technology, vol. 209, pp. 2152-2160, 2009.
【17】Y. Luo, S.G. Luckey, P.A. Friedman, Y. Peng, Development of an advanced superplastic forming process utilizing a mechanical pre-forming operation, International Journal of Machine Tools & Manufacture , vol. 48, pp. 1509-1518, 2008.
【18】Y. Luo, S.G. Luckey, W.B. Copple, P.A. Friedman, Comparison of Advanced SPF Die Technologies in the Forming of a Production Panel, Journal of Materials Engineering and Performance, vol. 17, pp.142-151, 2008.
【19】L.D. Hefti, Commercial Airplane Applications of Superplastically Formed AA5083 Aluminum Sheet, Journal of Materials Engineering and Performance, vol. 16, pp. 136–141, 2007.
【20】藍先進,超塑成形製程設計及模擬以製作機翼零件,國立中央大學,博士論文,民國102年。
【21】R. Verma, P.A. Friedman, A.K. Ghosh, S. Kim, C. Kim, Characterization of superplastic deformation behavior of a fine grain 5083 Al alloy sheet, Metallurgical and Materials Transactions A, vol 27, pp. 1889-1898, 1996.
【22】SKY Aluminum C.LTD, Superplastic 5083 alloy ALNOVI-1, pp. 1-9, 1994.
【23】A.K. Ghosh, C.H. Hamilton, Superplastic Forming of a Long Rectangular Box Section -- Analysis and Experiment, Rockwell International, Thousand Oaks, California, pp. 245-273, 1979.
【24】M. Vulcan, K. Siegert, D. Banabic, The Influence of Pulsating Strain Rates on the Superplastic Deformation Behaviour of Al-Alloy AA5083 Investigated by Means of Cone Test, Materials Science Forum, pp. 139-144, 2004.
【25】D. Banabic, M. Vulcan, K. Siegert, Bulge Testing under Constant and Variable Strain Rates of Superplastic Aluminium Alloys, CIRP Annals - Manufacturing Technology, vol. 54, pp. 205-208, 2005.
【26】張暘青,民航客機機翼前緣整流罩之超塑成形材料研究,國立中央大學,碩士論文,民國100年。
【27】X. Jiang, J. Cui, L. Ma, An Experimental Study of Cavity Nucleation During Superplastic Deformation, Material Research Society, vol.196, pp. 51-56, 1990.
【28】H.-y. Wu, J.-y. Perng, S.-h. Shis, C.-h. Chiu, S. Lee, J.-y. Wang, Cavitation characteristics of a superplastic 5083 Al alloy during gas blow forming, Journal of Materials Science, vol. 41, pp. 7446-7453, 2006.
【29】S.Kalpakjian, S.R. Schmid, Manufacturing Engineering and Technology, pp. 446, Pearson Prentice Hall, 2006.
【30】林維帥,熱引伸輔助超塑成形製作機翼整流罩之設計及分析,國立中央大學,碩士論文,民國101年。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔