(3.215.183.251) 您好!臺灣時間:2021/04/22 21:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃焜琳
研究生(外文):Kun-Lin Huang
論文名稱(外文):Effects of Diluted Ar in H2/SiH4 on Amorphous Hydrogenated Silicon Thin Film (i-layer) by an Inductive Coupled Plasma-Chemical Vapor Deposition (ICP-CVD) System
指導教授:李泉李泉引用關係
指導教授(外文):Chuan Li
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:73
中文關鍵詞:非晶矽氫薄膜電感偶合電漿化學氣相沉積電漿探針光發射光譜儀電漿診斷
外文關鍵詞:Amorphous hydrogenated silicon filmsICP-CVDLangmuir probeOESplasma diagnostics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:175
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
利用腔體內部裝有四個低電感天線的電感偶合電漿化學氣相沉積系統,在石英基板上,沉積非晶矽氫薄膜。我們通入了不同流量的矽烷、氬氣和氫氣,研究它們對於沉積薄膜的結構有何影響。為了要達到監控製程的目的,我們使用了電漿探針和光發射光譜儀來偵測沉積薄膜時,電漿狀態的變化,並且將電漿探針和光發射光譜儀所得到的數據加以分析。薄膜鍍製完成後,會使用X-ray繞射儀和拉曼光譜儀來檢驗薄膜的微結構。光學性質則是使用UV-VIS分光光譜儀來量測,並利用Beer-Lambert law和Tauc plot來估算非晶矽氫薄膜的能隙值。
結果顯示,當矽烷的流量較高時,薄膜的沉積速率會上升。而在矽烷中通入純氬氣反應時,沉積速率皆可以達到每秒3.5奈米,且在石英基板上形成非晶矽薄膜。當通入氫氣和氬氣混合的氣體與矽烷反應時(氬氣15sccm+氫氣50sccm+矽烷50sccm),沉積速率則可以達到每秒4.5奈米。雖然,我們都知道通入越多的氫氣可以幫助形成微晶矽,可是這些通入不同矽烷、氬氣和氫氣流量所沉積的矽氫薄膜,在X-ray繞射儀和拉曼光譜儀的證實下,還是維持原有的非晶結構。而UV-VIS光譜則可以得知我們的薄膜在可見光範圍有較高的吸收率。

Amorphous hydrogenated silicon films were deposited on quartz substrates in an inductive coupled plasma-chemical vapor deposition system with four internal low inductance antennas units. Different SiH4, Ar and H2 flow rates were tested for their influences on the structures of deposited films. For monitoring purposes, Langmuir probe and optical emission spectrometer were installed to detect the variation of electrical field in plasma during deposition. Data from Langmuir probe and optical emission spectrometer were analyzed subsequently. After deposition, the films were examined by X-ray diffractometer and Raman spectrometer for their microstructures. The optical properties were measured by UV-VIS spectrophotometer. The band gap of a-Si:H was estimated by the Beer-Lambert law and Tauc plot. Results indicate that higher silane flow rates, the films’ deposition rate will increase. Under the supply of pure Ar flow in silane, the deposition rate can be expedited to 3.5nm/sec and amorphous films were formed on quartz substrates. While with the supply of mixed hydrogen and argon (Ar 15sccm + H2 50sccm+ SiH4 50sccm), the deposition rate can reach 4.5nm/sec. Although well known that a high supply of H2 helps the formation of micro-crystalline silicon, these deposited hydrogenated Si films, confirmed by XRD and Raman spectroscopy, all maintained their amorphousness under various range of SiH4, Ar and H2 flow rates. The UV-VIS spectrum revealed that the high absorbance through the film in the visible light range.
CHINESE ABSTRACT i
ENGLISH ABSTRACT ii
ACKNOWLEDGEMENT iii
TABLE OF CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES x

CHAPTER ONE
INTRODUCTION
1.1 Introduction to solar cell 1
1.1.1 Development of solar cells and solar cell types 2
1.1.2 Theory of solar cells 3
1.2 Hydrogenated amorphous silicon thin film 6
1.2.1 Staebler-Wronski Effect (SWE) 7
1.2.2 Growth mechanism of hydrogenated silicon 8
1.3 Reaction gases 11
1.4 Motivation and Objectives 13

CHAPTER TWO
THEORIES AND METHODS
2.1 Equipment 14
2.1.1 Inductive Coupled Plasma-Chemical Vapor Deposition 15
2.2 Plasma Diagnostic Tools 17
2.2.1 Langmuir probe 17
2.2.2 Optical emission spectrometer 19
2.3 Film Characterization Tools 21
2.3.1 Surface Profiler 21
2.3.2 X-ray diffractometer 21
2.3.3 Raman Spectrometer 23
2.3.4 UV-VIS-NIR spectrophotometer 24

CHAPTER THREE
EXPERIMENT
3.1 Effects of diluted SiH4 in H2 on amorphous hydrogenated
silicon (i-layer) by ICP-CVD 26
3.2 Effects of diluted Ar in H2/SiH4 on amorphous hydrogenated
silicon (i-layer) by ICP-CVD 28

CHAPTER FOUR
RESULTS AND DISCUSSION
4.1 Effects of diluted SiH4 in H2 on amorphous hydrogenated
silicon (i-layer) by ICP-CVD 29
4.1.1 Deposition Rate and Thickness 29
4.1.2 I-V Curve from Langmuir Probe 29
4.1.3 OES Spectra 33
4.1.4 X-ray diffraction 35
4.1.5 Raman spectra 36
4.2 Effects of diluted Ar in H2/SiH4 on amorphous hydrogenated silicon (i-layer) by ICP-CVD 38
4.2.1 Deposition Rate and Thickness 38
4.2.2 I-V Curve from Langmuir Probe 38
4.2.3 OES Spectra 44
4.2.4 X-ray diffraction 47
4.2.5 Raman spectra 48
4.2.6 Optical analysis 49

CHAPTER FIVE
CONCLUSION 53
CHAPTER SIX
REFERENCE 54
1. H.F. Sterling, R.C.G. Swann “Chemical vapour deposition promoted by r.f. discharge,” Solid State Electron., 8(8) (1965) 653.
2. W.E. Spear, P.G. Le Comber “Substitutional doping of amorphous silicon,” Solid State Commun., 17 (1975) 1193.
3. D. E. Carlson, C. R. Wronski “Amorphous silicon solar cell,” Appl. Phys. Lett., 28 (1976) 671.
4. H. Keppner, J. Meier, P. Torres, D. Fischer, A. Shah “Microcrystalline silicon and micromorph tandem solar cells,” Appl. Phys. A, 69 (1999) 169.
5. J. Meier, S. Dubail, S. Golay, U. Kroll, S. Faÿ, E. Vallat-Sauvain, L. Feitknecht, J. Dubail, A. Shah “Microcrystalline Silicon and The Impact on Micromorph Tandem Solar Cells,” Sol. Energ. Mat. Sol. Cells, 74 (2002) 457.
6. O.Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, H. Wagner “Intrinsic Microcrystalline Silicon A New Material for Photovoltaics,” Sol. Energ. Mat. Sol. Cells, 62 (2000) 97.
7. K. Yamamoto, M. Yoshimi, Y. Tawada, Y. Okamoto, A. Nakajima “Thin Film Si Solar Cell Fabricated At Low Temperature,” J. Non-Cryst. Solids, 266-296 (2000) 1082.
8. B. Rech, T. Roschek, J. Müller, S. Wieder, H. Wagner “Amorphous and Microcrystalline Silicon Solar Cells Prepared at High Deposition Rates Using RF (13.56MHz) Plasma Excitation Frequencies,” Sol. Energ. Mat. Sol. Cells, 66 (2001) 267.
9. D.L. Staebler and C.R. Wronski “Optically induced conductivity changes in discharge‐produced hydrogenated amorphous silicon,” J. Appl. Phys. 51 (1980) 3262.
10. D.L. Staebler and C.R. Wronski “Reversible conductivity changes in discharge‐produced amorphous Si,” Appl. Phys. Lett. 31 (1977) 292.
11. A. KO£ODZIEJ “Staebler–Wronski effect in amorphous silicon and its alloys,” Opto-Electron. Rev, 12(1) (2004) 21.
12. A. Matsuda “Formation kinetics and control of microcrystallite in μc-Si:H from glow discharge plasma,” J. Non-Cryst. Solids, 59-60 (1983) 767.
13. C.C. Tsai, G.B. Anderson, R. Thompson, B. Wacker “Control of silicon network structure in plasma deposition,” J. Non-Cryst. Solids, 114 (1989) 151.
14. K. Nakamura, K. Yoshino, S. Takeoka, I. Shimizu “Roles of Atomic Hydrogen in Chemical Annealing,” Jpn. J. Appl. Phys., 34 (1995) 442.
15. A. Matsuda “Growth mechanism of microcrystalline silicon obtained from reactive plasmas,” Thin Solid Films, 337 (1999) 1.
16. S. Schicho, F. Köhler, R. Carius, A. Gordijn “The Relationship of Structural Properties of Microcrystalline Silicon to Solar Cell Performance,” Sol. Energ. Mat. Sol. Cells, 98 (2012) 391.
17. N.A. Bakr, A.M. Funde, V.S. Waman, M.M. Kamble, R.R. Hawaldar, D.P. Amalnerkar, V.G. Sathe, S.W. Gosavi, S.R. Jadkar “Role of Argon in Hot Wire Chemical Vapor Deposition of Hydrogenated Nanocrystalline Silicon Thin Films,” Thin Solid Films, 519 (2011) 3501.
18. H.P. Zhou, D.Y. Wei, S. Xu, S.Q. Xiao, L.X. Xu, S.Y. Huang, Y.N. Guo, W.S. Yan, M. Xu “Dilution Effect of Ar/H2 on the Microstructures and Photovoltaic Properties of nc-Si:H Deposited in Low Frequency Inductively Coupled Plasma,” J. Appl. Phys., 110 (2011) 023517.
19. D. Wang, Q. Liu, F. Li, Y. Qin, D. Liu, Z. Tang, S. Peng, D. He “Effect of Ar in the Source Gas on the Microstructure and Optoelectronic Properties of Microcrystalline Silicon Films Deposited by Plasma-Enhanced CVD,” Appl. Surf. Sci., 257 (2010) 1342.
20. P. Gogoia, P.N. Dixitb, P. Agarwal “Amorphous Silicon Films with High Deposition Rate Prepared Using Argon and Hydrogen Diluted Silane for Stable Solar Cells,” Sol. Energ. Mat. Sol. Cells, 91 (2007) 1253.
21. L. Prušáková, V. Vavruňková, M. Netrvalová, J. Müllerová, P. Šutta “Optical and Structural Characterization of Inhomogeneities in a-Si:H to μc-Si Transition,” Vacuum, 85 (2010) 502.
22. V. Vavrunkova, G.V. Elzakker, M. Zeman, P. Sutta “Medium-range Order in a-Si H Films Prepared from Hydrogen Diluted Silane,” Phys. Status Solidi A, 207(3) (2010) 548.
23. M. Fukawa, S. Suzuki, L. Guo, M. Kondo, A. Matsuda “High Rate Growth of Microcrystalline Silicon Using High-Pressure Depletion Method with VHF Plasma,” Sol. Energ. Mat. Sol. Cells,66 (2001) 217.
24. A.M. Funde, N.A. Bakr, D.K. Kamble, R.R. Hawaldar, D.P. Amalnerkar, S.R. Jadkar “Influence of Hydrogen Dilution on Structural, Electrical and Optical Properties of Hydrogenated Nanocrystalline Silicon (nc-Si:H) Thin Films Prepared by Plasma Enhanced Chemical Vapour Deposition (PE-CVD),” Sol. Energ. Mat. Sol. Cells, 92 (2008) 1217.
25. I. Sakata, M. Yamanaka, Y. Hayashi “Properties of hydrogenated amorphous silicon prepared by alternatively repeating chemical‐vapor deposition from disilane and hydrogen plasma treatment,” J. Appl. Phys., 74 (1993) 2543.
26. J. Li, J. Wang, M. Yin, P. Gao, D. He, Q. Chen, Y. Li, H. Shirai “Deposition of Controllable Preferred Orientation Silicon Films on Glass by Inductively Coupled Plasma Chemical Vapor Deposition,” J. Appl. Phys., 103 (2008) 043505.
27. K. Kandoussi, C. Simon, N. Coulon, K. Belarbi, T.M. Brahim “Nanocrystalline Silicon TFT Process Using Silane Diluted in Argon-Hydrogen Mixtures,” J. Non-Cryst. Solids, 354 (2008) 2513.
28. W.J. Soppe, C. Devilee, M. Geusebroek, J. Löffler, H.-J. Muffler “The Effect of Argon Dilution on Deposition of Microcrystalline Silicon by Microwave Plasma Enhanced Chemical Vapor Deposition,” Thin Solid Films, 515 (2007) 7490.
29. J Hopwood “Review of inductively coupled plasmas for plasma processing,” Plasma Sources Sci. Technol., 1 (1992) 109.
30. Y. Setsuhara, S. Miyake, Y. Sakawa, T. Shoji “Production of Inductively-Coupled Large-Diameter Plasmas with Internal Antenna,” Jpn. J. Appl. Phys., 38 (1999) 4263.
31. M. Kanoh, K. Suzuki, J. Tonotani, K. Aoki, M. Yamage “Inductively Coupled Plasma Source with Internal Straight Antenna,” Jpn. J. Appl. Phys., 40 (2001) 5419.
32. H. Kaki, A. Tomyo, E. Takahashi, T. Hayashi, K. Ogata, A. Ebe, K. Takenaka, Y. Setsuhara “Interface Structure of Microcrystalline Silicon Deposited by Inductive Coupled Plasma Using Internal Low Inductance Antenna,” Surf. Coat. Tech., 202 (2008) 5672.
33. H.M. Mott-Smith, I. Langmuir “The Theory of Collectors in Gaseous Discharges,” Phys. Rev., 28 (1926) 727.
34. P.A. Miller, M.E. Riley “Dynamics of collisionless rf plasma sheaths,” J. Appl. Phys. 82 (1997) 3689.
35. J.M. Hendron, C.M.O. Mahony, T. Morrow, W.G. Graham “Langmuir probe measurements of plasma parameters in the late stages of a laser ablated plume,” J. Appl. Phys. 81 (1997) 2131.
36. I. Langmuir “The Interaction of Electron and Positive Ion Space Charges in Cathode Sheaths,” Phys. Rev., 33 (1929) 954.
37. F. Tochikubo, A. Suzuki, S. Kakuta, Y. Terazono, T. Makabe “Study of the structure in rf glow discharges in SiH4/H2 by spatiotemporal optical emission spectroscopy- Influence of negative ions,” J. Appl. Phys., 68 (1990) 5532.
38. Y.J. Kim, Y.S. Choi, K.S. Shin, S.H. Cho, I.S. Choi, J.G. Han “High Deposition Rate Microcrystalline Silicon Films Prepared by Magnetic Mirror Assisted RF-PECVD,” Curr. Appl. Phys., 10 (2010) S354.
39. S.Y. Lien, Y.Y. Chang, Y.S. Cho, J.H. Wang, K.W. Weng, C.H. Chao, C.F. Chen “Characterization of HF-PECVD a-Si:H thin film solar cells by using OES studies” J. Non-Cryst. Solids, 357(2011) 161.
40. V.S. Waman, M.M. Kamble, M.R. Pramod, S.P. Gore, A.M. Funde, R.R. Hawaldar, D.P. Amalnerkar, V.G. Sathe, S.W. Gosavi, S.R. Jadkar “Influence of The Deposition Parameters on The Microstructure and Opto-Electrical Properties of Hydrogenated Nanocrystalline Silicon Films by HW-CVD,” J. Non-Cryst. Solids, 357 (2011) 3616.
41. N. Kosku, S. Miyazaki “Insights into The High-Rate Growth of Highly Crystallized Silicon Films From Inductively Coupled Plasma of H2-diluted SiH4,” Thin Solid Films, 511-512 (2006) 265.
42. Z. Wua, J. Sunb, Q. Leia, Y. Zhaob, X. Gengb, J. Xi “Analysis on pressure dependence of microcrystalline silicon by optical emission spectroscopy,” Physica E, 33 (2006) 125.
43. B.Y. Moon, J. H. Youn, S.H. Won, J. Jang “Polycrystalline silicon film deposited by ICP-CVD,” Sol. Energ. Mat. Sol. Cells, 69 (2001) 139.
44. Y. Qin, H. Yan, F. Li, L. Qiao, Q. Liu, D. He “The optoelectronic properties of silicon films deposited by inductively coupled plasma CVD,” Appl. Surf. Sci., 257 (2010) 817.
45. J. Wanga, P. Gaoa, M. Yina, Y. Qina, H. Yana, J. Li, S. Penga, D. He “Low-temperature deposition of highly crystallized silicon films on Al-coated polyethylene napthalate by inductively coupled plasma CVD,” J. Alloy. Compd., 481 (2009) 278.
46. S. Mukhopadhyay, C. Das, Swati Ray “Structural Analysis of Undoped Microcrystalline Silicon Thin Films Deposited by PECVD Technique,” J. Phys. D: Appl. Phys. 37 (2004) 1736.
47. S. Y. Myong, O. Shevaleevskiy, K.S. Lim, S. Miyajima, M. Konagai “Charge Transport in Hydrogenated Boron-Doped Nanocrystalline Silicon Carbide Alloys,” J. Appl. Phys., 98 (2005) 054311.
48. U.K. Das, P. Chaudhuri “Optical Emission Spectroscopic Study of a Radio-Frequency Plasma of Ar+SiH4,” Chem. Phys. Lett., 298 (1998) 211.
49. S. Nakamura, K. Matsumoto, A. Susa, M. Koshi “Reaction Mechanism of Silicon Cat-CVD,” J. Non-Cryst. Solids, 352 (2006) 919.
50. S. Tange, K. Inoue, K. Tonokura, M. Koshi “Catalytic Decomposition of SiH4 on a Hot Filament,” Thin Solid Films, 395 (2011) 42.
51. P.A.T.T. van Veenendaal, R.E.I. Schropp “Processes in Silicon Deposition by Hot-Wire Chemical Vapor Deposition,” Curr. Opin. Solid St. M., 6 (2002) 465.
52. K. Tonokura, M. Koshi “Reaction Kinetics in Silicon Chemical Vapor Deposition,” Curr. Opin. Solid St. M., 6 (2002) 479.
53. M.J. Kushner “A model for the discharge kinetics and plasma chemistry during plasma,” J. Appl. Phys. 63 (1988) 2532.
54. N.A. Bakr, A.M. Funde, V.S. Waman, M.M. Kamble, R.R. Hawaldar, D.P. Amalnerkar, V.G. Sathe, S.W. Gosavi, S.R. Jadkar “Role of Argon in Hot Wire Chemical Vapor Deposition of Hydrogenated Nanocrystalline Silicon Thin Films,” Thin Solid Films, 519 (2011) 3501.
55. W. Li, D. Xia, H. Wang, X. Zhao “Hydrogenated Nanocrystalline Silicon Thin Film Prepared by RF-PECVD at High Pressure,” J. Non-Cryst. Solids, 356 (2010) 2552.
56. M.J. McCaughey, M.J. Kushner “Simulation of the bulk and surface properties of amorphous hydrogenated silicon deposited from silane plasmas,” J. Appl. Phys. 65 (1989) 186.
57. L. Sansonnenst, A.A. Howlingt, Ch. Hollensteint, J-L Doriert, U. Kroll “The role of metastable atoms in argon-diluted silane radiofrequency plasmas,” J. Phys. D: Appl. Phys. 27 (1994) 1406.
58. J, Tauc, R. Grigorovici, A. Vancu, “Optical Properties and Electronic Structure of Amorphous Germanium,” Phys. Status. Solidi. 15(2) (1966) 627.
59. J. Tauc, “Optical Properties and Electronic Structure of Amorphous Ge and Si,” Mater. Res. Bull. 3 (1968) 37.
60. H. Tang, K. Prasad, R. Sanjines, P.E. Schmid, F. Levy, “Electrical and Optical Properties of TiO2 Anatase Thin Films,” J. Appl. Phys., 75(4) (1994) 2042.
61. M. M. Rahman, K. M. Krishna, T. Soga, T. Jimba, M. Umeno, “Optical Properties and X-Ray Photoelectron Spectroscopic Study of Pure and Pb-Doped TiO2 Thin Films,” J. Phys. Chem. Solid., 60(2) (1999) 201.
62. P. Sharma, M. Vashistha, I. P. Jain,” Optical Properties of Ge20Se80-XBix Thin Films,” J. Optoelect. Adv. Mater. 7(5) (2005) 2647.
63. J. Yu, J. Xiong, B. Cheng, S. Liu, “Fabrication and Characterization of Ag–TiO2 Multiphase Nanocomposite Thin Films with Enhanced Photocatalytic Activity,” Appl. Catal. B, 60(3-4) ( 2005) 211.
64. J. R. Bellingham, W. A. Phillips, C. J. Adkins, “Electrical and Optical Properties of Amorphous Indium Oxide,” J. Phys.: Condens. Matter 2 (1990) 6207.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔