跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/07 19:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳昱磊
研究生(外文):YU-LEI WU
論文名稱:液體磨料降溫法應用於不鏽鋼拋光之研究
論文名稱(外文):A Study of Polishing for SUS304 with Cooling Abrasive Liquid
指導教授:顏炳華顏炳華引用關係
指導教授(外文):Piin-Hwa Yan
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:92
中文關鍵詞:油水混合拋光液冷凍不鏽鋼拋光低溫拋光液
外文關鍵詞:oil-water mixed polishing solutionfreezingpolished stainless steelhypothermic polishing solution
相關次數:
  • 被引用被引用:1
  • 點閱點閱:400
  • 評分評分:
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:1
本研究是利用冷凍機對拋光研究中所使用的拋光液進行溫度上的改變,進而改變其所呈現的形態,其主要目的是利用其形態的特點,使較環保的拋光液也能達到傳統拋光液的效果。藉由控制拋光液成分、拋光液重量百分比濃度、SiC號數、溫度、拋光頭與試片間隙、平台移動距離、平台移動速度…等一系列的實驗後,了解到拋光液的形態改變時,對於帶動其磨料(SiC)的方式也有所改變,進而可使油水混合拋光液也可加工出與傳統拋光液一樣的表面品質。
經一系列的實驗探討後可以得知,在較佳參數組合中,能讓油水混合拋光液於10分鐘有效改善不鏽鋼表面粗糙度由Ra 0.189μm改善至0.044μm,改善率達到76.75%,若是純油拋光液的話,其最佳改善率為73.05% (Ra 0.051μm),除了表面粗糙度的比較外,從SEM圖上亦可看見油水混合拋光液同樣擁有完整移除氧化層的能力,由此可以證明油水混合拋光液在適當的條件下是可以完全代替純油拋光液來使用,甚至可以達到更好的加工效果。

A study of polishing for SUS304 with cooling abrasive liquid. This study is conducted using the cooler to change the temperature of polishing solution in this polishing research and change its form. The main purpose is using the feature of the form to make the environmentally-friendly polishing solution to achieve the effect of the traditional polishing solution. By controlling the polishing solution composition, the weight percent concentration of the polishing solution, the numbers of SiC, temperature, the polishing gap, the platform speed to design a series of experiments. We can comprehend how to change the way to drive its abrasive (SiC) when the form of the polishing solution changes. Then it can make the oil-water mixed polishing solution achieve the surface quality of the traditional polishing solution.
A series of experiments show that the combination of better parameters for the oil-water mixed polishing solution can be effective in improving the stainless S.R. of 10 minutes to reduce by Ra 0.189 μm to 0.044 μm, improvement rate was 76.75%. If it is the pure oil polishing solution, the improvement rate was 73.05% (Ra 0.051 μm). In addition to the comparisons of the surface roughness, we can also know the ability to remove oxide layer of the oil-water mixed polishing solution from the SEM images. This shows the oil-water mixed polishing solution under appropriate conditions can be completely instead of the pure oil polishing solution, and get better polishing quality.

中文摘要 i
英文摘要 ii
誌 謝 iii
目 錄 iv
圖目錄 vii
表目錄 x
第一章 緒論 1
1-1前言 1
1-2研究背景與目的 2
1-3研究方法 3
1-4文獻回顧 4
第二章 基本原理 7
2-1傳統拋光加工法 7
2-2機械拋光機制 7
2-3加工型態 10
2-4黏性磨料加工特性 11
第三章 實驗設計與研究內容 13
3-1實驗流程規劃 13
3-2加工構想 15
3-3實驗材料 16
3-3-1工件材料 16
3-3-2磨料 18
3-3-3切削液 18
3-3-4乳化劑 20
3-3-5拋光墊 21

3-4實驗設備 22
3-4-1液體磨料降溫法輔助不鏽鋼拋光研磨機 22
3-4-2平台式冷卻器 23
3-4-3 2D表面粗糙度量測儀 24
3-4-4 3D表面粗度輪廓形狀量測機 25
3-4-5低真空掃描式電子顯微鏡(Low Vacuum-Scanning Electron Microscope: LVSEM) 26
3-4-6精密電子天平 27
3-4-7磁力攪拌器 28
3-4-8超音波洗淨機 29
3-4-9 Z軸歸零器 30
3-5實驗方法 31
3-5-1實驗參數設計 31
3-5-2實驗步驟 35
3-5-3表面粗糙度之量測 35
第四章 結果與討論 36
4-1前置實驗 36
4-1-1拋光液濃度對表面粗糙度之影響 36
4-1-2拋光時間對表面粗糙度之影響 38
4-1-3拋光頭轉速對表面粗糙度之影響 40
4-1-4平台位移距離對表面粗糙度之影響 42
4-1-5平台位移速率對表面粗糙度之影響 44
4-2液體磨料降溫法應用於純油拋光液 46
4-2-1磨粒號數對表面粗糙度之影響 46
4-2-2拋光間距對表面粗糙度之影響 48
4-3液體磨料降溫法應用於油水混合拋光液 50
4-3-1磨粒號數對表面粗糙度之影響 52
4-3-2拋光間距對表面粗糙度之影響 55
4-4液體磨料降溫法應用於不同拋光液上的差別 58
4-5液體磨料降溫法應用於油水混合拋光液 59
4-5-1拋光液濃度對表面形貌之影響 59
4-5-2拋光液種類對表面形貌之影響 61
4-5-3平台位移距離對表面形貌之影響 63
4-5-4溫度對拋光液(HD32機油+#1000SiC)之影響 65
4-5-5溫度對拋光液(煤油加水+#1000SiC)之影響 67
4-5-6溫度對拋光液(煤油加水+#8000SiC)之影響 69
第五章 結論 73
參考文獻 74


1. 張耿維,「磁力研磨與電解磁力研磨之拋光特性研究」,國立中央
大學機械工程學系博士論文,2003。
2. E. Belloy, A. Sayah, M.A.M. Gijs, “Oblique powder blasting for
three-dimensional micromachining of brittle materials”, Sensors and
Actuators A 92 (2001) 358-363.
3. W. Theisen, A. Schuermann, “Electro discharge machining of
nickel–titanium shape memory alloys”, Materials Science and
Engineering A378 (2004).200-204.
4. H. Takino, T. Ichinohe, K. Tanimoto, S. Yamaguchi, K. Nomura, M.
Kunieda, “High-quality cutting of polished single-crystal silicon by
wire electrical discharge machining”, Article Precision Engineering 29
(2005) 423-430.
5. A. Curodeau, M. Richard, L. Frohn-Villeneuve, “Molds surface
finishing with new EDM process in air with thermoplastic composite
electrodes,” Journal of Materials Processing Technology 149 (2004)
278–283.
6. P. Peças, E. Henriques, “Influence of silicon powder-mixed dielectric
on conventional electrical discharge machining,” International Journal
of Machine Tools & Manufacture 43 (2003) 1465–1471
7. B. H. Kim, S. H. Ryu, D. K. Choi and C. N. Chu,
“Micro electrochemical milling”, J. Micromech. Microeng. (2005)15
124-129



8. L. S. Andrade, S. C. Xavier, R. C. Rocha-Filho, N. Bocchi, S. R.
Biaggio, “Electropolishing of AISI-304 stainless steel using an
oxidizing solution originally used for electrochemical coloration”,
Electrochimica Acta 50 (2005) 2623–2627.
9. E. S. Lee, “Machining Characteristics of the Electropolishing of
Stainless Steel (STS316L)”, The International Journal of Advanced
Manufacturing Technology 16 (2000) 591–599.
10. K. Takahata, S. Aoki and T. Sato, “Fine surface finishing method for
3-dimensional micro structures”, IEEE MEMS (1996) 73-78.
11. S. Yin, T. Shinmura, “Vertical vibration-assisted magnetic abrasive
finishing and deburring for magnesium alloy”, International Journal of
Machine Tools & Manufacture 44 (2004) 1297–1303.
12. H. Yamaguchi, T. Shinmura, “Internal finishing process for alumina
ceramic components by a magnetic field assisted finishing process”,
Precision Engineering 28 (2004) 135–142.
13. Y. H. Guu, H. Hocheng, C. Y. Chou, C. S. Deng, “Effect of electrical
discharge machining on surface characteristics and machining damage
of AISI D2 tool steel”, Materials Science and Engineering A358 (2003)
37–43.
14. K. M. Shu, G. C. Tu, “Study of electrical discharge grinding using
metal matrix composite electrodes”, International Journal of Machine
Tools & Manufacture 43 (2003) 845–854.
15. G. Cusanelli, A. Hessler-Wyser, F. Bobard, R. Demellayer, R. Perez, R.
Flukiger, “Microstructure at submicron scale of the white layer
produced by EDM technique”, Journal of Materials Processing
Technology 149 (2004) 289–295.
16. B. Mohana, A. Rajadurai, K. G. Satyanarayana, “Electric discharge
machining of Al–SiC metal matrix composites using rotary tube
electrode”, Journal of Materials Processing Technology 153 (2004)
978-985.
17. J. Y. Choi, H. D. Jeong, “A study on polishing of molds using
hydrophilic fixed abrasive pad”, International Journal of Machine
Tools & Manufacture 44 (2004) 1163–1169.
18. Y. Unoa, A. Okadaa, K. Uemurab, P. Raharjo, T. Furukawa, K. Karato,
“High-efficiency finishing process for metal mold by large-area
electron beam irradiation”, Source: Precision Engineering 29 (2005)
449-455.
19. H. S. Liu, B. H. Yan, C. L. Chen and F. Y. Huang “Application of micro-EDM combined with high-frequency dither grinding to micro-hole machining”, International Journal of Machine Tools & Manufacture (2006) 46 80-87.
20. M. D. Krymsky, “Magnetic abrasive finishing”, Metal Finishing (1993)
21-25.
21. Z. Haga and T. Semba, “Electrophoretic polishing of zirconia
ceramicsusing a porous anodic film as a binder of ultrafine silica
abrasives”, JSME International Journal Series C, 41 (4) (1998)
922-928
22. Y. Xie , and B. Bhushan, “Effects of Particle size, Polishing Pad and Contact Pressure in Free Abrasive Polishing”, Wear 200 (1996) 281-295
23. D.G. Thakurta , C.L. Borset , D.W. Schwendeman , R.J. Gutmann , and W.N. Gill , “Pad Porosity, Compressibility and Slurry Delivery Effect in Chemical-Mechanical Planarization: Modeling and Experiments”, Thin Solid Flims 366 (2000) 181-190
24. 詹福賜編譯,“精密陶瓷加工法,”全華科技圖書出版,1994年。
25. L. M. Cook, Chemical processes in glass polishing, Journal of
Non-Crystalline Solids, Vol. 120, pp.152-171, 1990.
26. V.K. Jain, “Simulation of Surface Generated in Abrasive Flow Machining(AFM) Process”, Robotics and Computer Integrated Manufacturing 15 (1999) 403-412.
27. B. Bhushan, “Introduction to tribology texbook”, by John Wiley and Sons, New York, 2002
28. 電機工程手冊編輯委員會,機械工程手冊2-鋼材料,五南圖書有限公司,2002
29. 白崇廷,「行星式機構結合二維振動輔助磁力研磨應用於SUS304不鏽鋼之研究」,國立中央大學,碩士論文,2012


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top