(3.230.143.40) 您好!臺灣時間:2021/04/21 18:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:曾嘉偉
研究生(外文):Jia-wei Tseng
論文名稱:白光發光二極體之光電熱耦合模擬研究
論文名稱(外文):The research on white LED by the optical electrical and thermal coupling method
指導教授:陳志臣
指導教授(外文):Jyh-chen Chen
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:127
中文關鍵詞:白光LED光電熱耦合數值模擬
外文關鍵詞:white LEDoptical electrical and thermal couplingnumerical simulation
相關次數:
  • 被引用被引用:2
  • 點閱點閱:302
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:68
  • 收藏至我的研究室書目清單書目收藏:0
近年來,白光發光二極體(White LED)在固態照明中扮演著非常重要的地位,而LED封裝體內光與熱的影響必須了解其機制。本研究以有限元素法及蒙地卡羅統計方法再配合自行推導的螢光粉光與熱轉換方程式建立一套從晶片到螢光粉整個白光LED封裝體光電熱數值模擬模型,利用實際發光層的電流密度當作LED出光光源,此數值模型可以計算及分析封裝螢光粉後整體的溫度分布型態、出光功率、色溫、演色性和色彩均勻性的變化,利用實驗量測接面溫度、光功率、色溫、演色性和色彩均勻性與模擬驗證結果有一致性的分佈。
本研究以藍光激發黃色YAG螢光粉作為實驗用白光LED,從白光與藍光LED暫態溫度實驗量測結果推論加入螢光粉會增加螢光膠的熱容量而降低熱擴散率,即使白光LED接面溫度在同功率下比藍光LED高,但隨著電功率的增加接面溫度上升幅度又不像藍光LED這麼明顯。而由實驗與模擬結果了解白光LED在低於電功率0.8W(約140°C)時黃光出光效率會較藍光好,而超過0.8W後黃光出光效率會低於藍光甚至出現光衰退行為,主要是晶片與螢光粉材料性質不同,在低溫時晶片衰退速率較快,而高溫時則是螢光粉衰退速率較快所導致。
最後我們利用數值分析模擬常見的三種封裝體:填充式(Filling)、鑄模式(Molding)和遠離式(Remote)三種不同功率下光、熱與色的差異性。結果顯示遠離式封裝在不同功率下都有較佳的光輸出功率和最低的色溫飄移現象,較適用於照明上;而其餘兩種封裝形式都有與晶片或銅基板接觸的情形,熱交互作用較強,鑄模式在不同功率下雖有較佳的色彩均勻性,但因其體積小溫度高,高功率下色溫飄移太過劇烈且光功率衰退較快,而填充式色溫飄移幅度沒有鑄模式劇烈,但其相對色彩均勻性較差,已目前常見的LED看板或是背光元件來說,高功率下需要較好的光輸出功率及色彩均勻性,因此我們分別利用上述兩者優點提出幾個可以同時提升光輸出功率與色彩均勻性的方法,即為1.螢光粉體積不能太小。2.必須接觸晶片及銅基板。3.螢光粉必須為低濃度。這幾個方法可以分別改善鑄模式與填充式的缺點,並設計較佳的螢光粉封裝體。

In recent years, white light-emitting diode (White LED) playing an important role in solid-state lighting, so that we must understand the effect mechanism of light and heat inside the LED package. This study uses the finite element method (FEM), Monte Carlo statistics method and phosphor transform equation of light and heat derivate by ourselves to build a couple of light, electrical and thermal numerical simulation model. It includes entire white LED package from chip to phosphor. We use the realistic current density to be the light source of active layer in simulation. Under numerical simulation, we calculate and analyze overall LED temperature distribution, light output power, color temperature, color rendering index and angular color uniformity. Through reality experiment to measure junction temperature, light output power, color temperature, color rendering index and angular color uniformity, this experimental result get good agreement with the simulation.
The study uses yellow phosphor excited by blue light as the experimental white LED. From the result of transient temperature measure experiment, between blue and white LED, we conclude that phosphor increases the heat capacity and decreases thermal diffusivity of phosphor encapsulate. The white LED junction temperature is higher than blue LED under the same electric power. But when electric power increased the rise of white LDE junction temperature is not obviously. Through the white LED simulation and experiment results, we know yellow light efficiency is higher than blue light below electrical power 0.8W (about 140°C), and when electrical power exceed 0.8W, the yellow light efficiency may lower than the blue light even appear decay behavior. Because of the different material property between phosphor and chip, the chip decay rate is faster at low temperature and at higher temperature the phosphor decay rate is faster.
Finally, we simulate three common packages: Filling, Molding and Remote, analyze the difference of light, heat and color at different power. The result shows Remote package has better light output power and lowest color temperature shift, it can apply to lighting. The other packages connect with chip and copper slug have stronger heat exchange. Molding package has uniform angular color distribution at different power, but the temperature is higher for its small volume, so color temperature shift drastically and light output power decay faster. Filling package color temperature shifting is more stable than Molding package, but it has poor angular color uniformity. For the common LED screen or backlight components must have better light output power and angular color distribution at high power. We use the advantages of Molding and Filling packages to propose improvements: the volume of phosphor encapsulates cannot too small, it should contact with chip and copper slug and should be low concentration. These ways can improve Molding and Filling packages disadvantages, and design better phosphor packages.

中文摘要 i
Abstract iii
致謝 v
目錄 vi
圖目錄 ix
表目錄 xiii
符號說明 xiv
第一章緒論 1
1-1研究背景 1
1-2相關研究、文獻探討 3
1-2-1螢光粉封裝體結構差異與光萃取效率的影響 3
1-2-2螢光粉封裝體對於色彩均勻性的影響 4
1-2-3熱效應對於螢光粉封裝體的影響 5
1-2-4螢光粉熱衰效應與熱傳導係數變化 6
1-3研究動機與目的 7
第二章基礎理論與數值方法 16
2-1發光原理 16
2-1-1發光二極體發光原理 16
2-1-2螢光粉發光原理 17
2-2發光效率 17
2-2-1發光二極體晶片發光效率 17
2-2-2螢光粉發光效率 19
2-2-3從晶片到螢光粉整體白光LED能量轉換效率 19
2-3晶片電場數值理論 20
2-3-1統御方程式與邊界條件 20
2-3-2活化層之等效導電率假設 22
2-4晶片溫場數值理論 23
2-5光場數值理論 25
2-5-1折射定律(Snell's law) 25
2-5-2全反射定律(Total Internal Reflection,TIR) 25
2-5-3吸收定律(Beer-Lambert-Bouguer law) 25
2-5-4菲涅爾損失(Fresnel loss) 26
2-6 螢光粉數值理論 27
2-6-1螢光粉光學特性分析與假設 27
2-6-2螢光粉散射理論 28
2-6-3螢光粉熱衰理論 29
2-6-4螢光粉與矽膠(Silicone)混合成螢光膠之熱傳導係數 30
2-7白光發光二極體光、電與熱耦合分析 31
2-8研究求解方法 32
第三章量測系統及實驗方法 44
3-1接面溫度量測理論 44
3-2接面溫度量測系統 45
3-2-1K-Factor校正曲線量測方法 45
3-2-2LED接面溫度量測方法 45
3-3 LED光學特性量測系統 46
3-3-1光功率、色溫及光譜量測 46
3-3-2出光拍攝 46
3-3-3色溫隨發光角度量測 47
第四章結果與討論 52
4-1 LED 溫度量測結果 52
4-1-1接面溫度量測結果 52
4-1-2銅基板溫度量測結果 52
4-2光、電與耦合的相關模擬設定 53
4-3藍光與白光LED光、電與熱耦合模擬結果 55
4-3-1藍光LED模擬與實驗結果 55
4-3-2白光LED模擬與實驗結果 55
4-4不同螢光粉濃度之光電熱耦合模擬 57
4-4-1高瓦數下不同螢光粉濃度之光飽和與衰退行為 58
4-5不同封裝體高瓦數下加入散熱鋁塊螢光粉與晶片光與熱影響模擬探討 59
第五章結論與未來展望 95
參考文獻 97

[1]商育滿、程金保,「從白熾燈泡停產談節能照明新紀元」,取自 http://energymonthly.tier.org.tw/Report/201202/35.pdf (2012).
[2]http://www.ledinside.com.tw/knowledge/20090109-8979.html, LEDinside 全球白熾燈泡禁用時間表 (2009).
[3]宋福生,「照明系統設計規劃與節能應用」,取自http://energylaw.ecct.org.tw/files/03_%E7%85%A7%E6%98%8E%E7%B3%BB%E7%B5%B1%E8%A8%AD%E8%A8%88%E8%A6%8F%E5%8A%83%E8%88%87%E7%AF%80%E8%83%BD%E6%87%89%E7%94%A8.pdf (2011).
[4]P. Deurenberg, C. Hoelen, J. van Meurs, J. Ansems, “Achieving color point stability in RGB multi-chip LED modules using various color control loops,” Proc. SPIE, 5941, 59410C-1 (2005).
[5]J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, Y. C. Lin, W. C. Lai, J. M. Tsai, G. C. Chi, R. K. Wu, “White-Light Emission From Near UV InGaN–GaN LED Chip Precoated With Blue/Green/Red Phosphors” IEEE Photon. Tech., 15, 18-20 (2003).
[6]R. Mueller-Mach, G. O. Mueller, M. R. Krames, T. Trottier, “High-Power Phosphor-Converted Light-Emitting Diodes Based on III-Nitrides,” IEEE. J. Quantum Elec., 8, 339-345 (2002).
[7]A. A. Setlur, A. M. Srivastava, H. A. Comanzo, D. D. Doxsee, “Phosphor blends for generating white light from near-UV/blue light-emitting devices,” United States Patent, US 6685852 (2001).
[8]Y. Shimizu, K. Sakano, Y. Noguchi, T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” United States Patent, US 5998925 (1997).
[9]Y. H. Won, H. S. Jang, K. W. Cho, Y. S. Song, D. Y. Jeon, H. K. Kwon, “Effect of phosphor geometry on the luminous efficiency of high-power white light-emitting diodes with excellent color rendering property,” Optics Lett., 34, 1-3 (2009).
[10]https://wp168.wordpress.com/2009/02/04/nichias-leds-hit-249-lmw/, 光電大未來-光電產業新聞整理 (2009).
[11]http://www.cree.com/news-and-events/cree-news/press-releases/2012/april/120412-254-lumen-per-watt, Cree news and events (2012).
[12]http://www.bnext.com.tw/article/view/cid/138/id/27369, 飛利浦創造節能效率為高暖白光LED (2013).
[13]N. Narendran, Y. Gu, J. P. Freyssinier, H. Yu, L. Deng, “Solid-state lighting : failure analysis of white LEDs,” J. Crystal. Growth , 268, 449-456 (2004).
[14]Philipslumileds, Luxen Emitter Technical Datasheet
[15]Philips White Paper “Understanding power LED lifetime analysis”
[16]L. Bechoua, O. Rehiouia, Y. Deshayesa, O. Gilardb, G. Quadrib, Y. Oustena, “Measurement of the thermal characteristics of packaged double-heterostructure light emitting diodes for space applications using spontaneous optical spectrum properties,” Optics Laser Tech., 40, 589-601 (2008).
[17]S. C. Yang, P. Lin, C. P. Wang, S. B. Huang, C. L. Chen, P. F. Chiang, A. T. Lee, M. T. Chu, “Failure and degradation mechanisms of high-power white light emitting diodes,” Microelectronics Reliability, 50, 959-964 (2010).
[18]J. G. Solé, L. E. Bausa, D. Jaque, “An Introduction to the Optical Spectroscopy of Inorganic Solids,” Universidad Autónoma de Madrid, Madrid, Spain (2005).
[19]S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties,” Mate. Sci. Engineering R, 71, 1-34 (2010).
[20]Y. ZHANG, Lan Li, X. ZHANG, Q. Xi, “Temperature effects on photoluminescence of YAG:〖"Ce" 〗^"3+" phosphor and performance in white light-emitting diodes,” J. Rare Earths, 26, 446-449 (2008).
[21]L. Chen, C. C. Lin, C. W. Yeh, R. S. Liu, “Light Converting Inorganic Phosphors for White Light-Emitting Diodes,” Materials, 3, 2172-2195 (2010).
[22]F. Wall, P. S. Martin, G. Harbers, “High Power LED Package Requirements,” Proc. SPIE, 5187, 85-92 (2004).
[23]D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, S. L. Rudaz, “Illumination With Solid State Lighting Technology,” IEEE J. Quan. Elec., 8, 310-320 (2002) .
[24]N. Narendran, Y. Gu, J. P. Freyssinier-Nova, Y. Zhu, “Extracting phosphor-scattered photons to improve white LED efficiency,” Phys. Stat. Sol., 202, R60-R62 (2005).
[25]Y. Zhu, N. Narendran, Y. Gu, “Investigation of the Optical of YAG:Ce Phosphor ,” Proc. SPIE, 6337, 63370s (2006).
[26]J. K. Kim, H. Luo, E. F. Schubert, J. Cho, C. Sone, Y. Park, “Strongly Enhanced Phosphor Efficiency in GaInN White Light-Emitting Diodes Using Remote Phosphor Configuration and Diffuse Reflector Cup,” Jpn. J. Appl. Phys.,44, pp 649-651 (2005).
[27]N. Narendran, “Improved Performance White LED,” Proc. SPIE, 5941, 594108-1 (2005).
[28]H. Luo, J. K. Kim, E. F. Schubert, J. Cho, C. Sone, “Analysis of high-power packages for phosphor-based white-light-emitting diodes,” Appl. Phys. Lett., 86, 243505 (2005).
[29]S. C. Allen, A. J. Steckl, “ELiXIR—Solid-State Luminaire With Enhanced Light Extraction by Internal Reflection,” J. Display Tech., 3, 155-159 (2007).
[30]S. C. Allen, A. J. Steckl, “A nearly ideal phosphor-converted white light-emitting diode,” Appl. Phys. Lett., 92, 143309 (2008).
[31]M. T. Lin, S. P. Ying, M. Y. Lin, K. Y. Tai, S. C. Tai, C. H. Liu, J. C. Chen, C. C. Sun, “Ring Remote Phosphor Structure for Phosphor-Converted White LEDs,”IEEE Photon. Tech. Lett., 22, 574-576 (2010).
[32]M. T. Lin, S. P. Ying, M. Y. Lin, K. Y. Tai, S. C. Tai, C. H. Liu, J. C. Chen, C. C. Sun, “Inverted cone lens encapsulant with gradient surface for Ring remote phosphor structure,” IEEE (2012).
[33]B. Li, D. Zhang, Y. Huang, Z. Ni, S. Zhuang “A new structure of multi-layer phosphor package of white LED with high effciency,” Chine. Opti. Lett., 8, 221-223 (2010).
[34]D. Zhang, B. Li, “A multi-layer phosphor package of white-light-emitting diodes with high efficiency,” Optik, 121, 2224-2226 (2010).
[35]J. P. You1, N. T. Tran, F. G. Shi1, “Light extraction enhanced white light-emitting diodes with multi-layered phosphor configuration,” Opti. Express, 18, 5055-5060 (2010).
[36]K. Wang, D. Wu, F. Chen, Z. Liu, X. Luo, S. Liu, “Angular color uniformity enhancement of white light light-emitting diodes integrated with freeform lenses,” Optic Lett., 35, 1860-1862 (2010).
[37]Y. S., Y. He, N. T. Tran, F. G. Shi, “Angular CCT Uniformity of Phosphor Converted White LEDs: Effects of Phosphor Materials and Packaging Structures,” IEEE Photon. Tech., 23, 137-139 (2011).
[38]C. C. Sun, C. Y. Chen, C. C. Chen, C. Y. Chiu, Y. N. Peng, Y. H. Wang, T. H. Yang, T. Y. Chung, C. Y. Chung, “High uniformity in angular correlated-color-temperature distribution of white LEDs from 2800K to 6500K,” Optics Express, 20, 6622-6630 (2012).
[39]B. Fan, H. Wu, Y. Zhao, Y. Xian, G. Wang, “Study of Phosphor Thermal-Isolated Packaging Technologies for High-Power White Light-Emitting Diodes,” IEEE Photon. Tech., 19, 1121-1123 (2007).
[40]J. H. Hwang, Y. D. Kim, J. W. Kim, S. J. Jung, H. K. Kwon, T. H. Oh, “Study on the effect of the relative position of the phosphor layer in the LED package on the high power LED lifetime,” Phys. Stat. Sol., 7, 2157-2161 (2010).
[41]A. Furgel, O. V. Molin, V. E. Borshch, E. M. Sigal, M. A. Tyrtsakova, “Thermal conductivity of polymer composites with a disperse filler,” J. Eng. Phys. Thermophysical, 62, pp.335-340 (1992).
[42]B. Yan, N. T. Tran, J. P. You, F. G. Shi, “Can Junction Temperature Alone Characterize Thermal Performance of White LED Emitters?,” IEEE Photon. Tech., 23, 555-557 (2011).
[43]K. J. Chen, H. C. Chen, M. H. Shih, C. H. Wang, M. Y. Kuo, Y. C. Yang, C. C. Lin, H. C. Kuo, “The Influence of the Thermal Effect on CdSe/ZnS Quantum Dots in Light-Emitting Diodes,” IEEE J. Lightwave Tech., 30, 2256-2261 (2012).
[44]Y. C. Hsu, C. C. Tsai, M. H. Chen, Y. T. Lo, C. W. Lee, W. H. Cheng, “Decay Mechanisms of Lumen and Chromaticity for High-Power Phosphor-Based White-Light-Emitting Diodes in Thermal Aging,” IEEE. Elec. Comp. Tech. Conference, 58th, 779-782 (2008).
[45]V. Bachmann, C. Ronda, A. Meijerink, “Temperature Quenching of Yellow 〖"Ce" 〗^"3+" Luminescence in YAG:Ce,” Chem. Mater., 21, 2077-2084 (2009).
[46]Z. He, Z. Li, X. Fan, W. Cheng, J. Ju, Q. Ou, R. Liang, “Photoluminescence enhancement and thermal performance of surface modified "Y" _"3" 〖"Al" 〗_"5" "O" _"12" ":" 〖"Ce" 〗^"3+" phosphor by chemical wet etching,” Function Materials Lett., 6,1350008-1 (2013).
[47]Q. Zhang, Z. Pi, M. Chen, X. Luo, L. Xu, S. Liu, “Effective thermal conductivity of silicone/ phosphor composites” J. Comp. Mater., 0, 1-9 (2011).
[48]C. Yuan, X. Luo, “A unit cell approach to compute thermal conductivity of uncured silicone/phosphor composites,” International J. Heat and Mass Tran.,56 , 206-211 (2013).
[49]D. Marcos-Gomez, J. Ching-Lloyd, M. R. Elizalde, W. J. Clegg, J. M. Molina-Aldareguia, “Predicting the thermal conductivity of composite materials with imperfect interface,” J. Comp. Sci. Tech., 16, 2276 (2010).
[50]C. Kim, “Percolation Theory,” Imperial College London, London, United Kingdom, (2002).
[51]J. C. Chen, G. J. Sheu, F. S. Hwu, H. I. Chen, J. K. Sheu, T. X. Lee, C. C. Sun, “Electrical-Optical Analysis of a GaN/Sapphire LED Chip by Considering the Resistivity of the Current-Spreading Layer,” Opti. Review, 16, 213-215 (2009).
[52]F. S. Hwu, T. H. Sung, C. H. Chen, J. W. Tseng, H. Qiu, J. C. Chen, “A Numerical Model for Studying Multimicrochip and Single-Chip LEDs With an Interdigitated Mesa Geometry,” IEEE J. Photon. Soc. Pub., 5, 6600515 (2013).
[53]G. J. Sheu, F. S. Hwu, J. C. Chen, J. K. Sheu, W. C. Laic “Effect of the Electrode Pattern on Current Spreading and Driving Voltage in a GaN/Sapphire LED Chip, ” J. Elec. Soc., 155, H836-H840 (2008).
[54]F. S. Hwu, J. C. Chen, S. H Tu, G. J. Sheu, H. I. Chen , J. K. Sheu “A Numerical Study of Thermal and Electrical Effects in a Vertical LED Chip, ” J. Elec. Soc., 157, H31-H37 (2010).
[55]S. H. Tu, J. C. Chen, F. S. Hwu, G. J. Sheu, F. L. Lin, S. Y. Kuo, J. Y. Chang, C. C. Lee “Characteristics of current distribution by designed electrode patterns for high power Thin GaN LED,” Solid-Slate Elec., 54, 1438-1443 (2010).
[56]施敏(S. M. Sze)著,半導體元件物理與製作技術,黃調元譯,二版,國立交通大學出版社,新竹市,民國九十一年。
[57]E. F. Schubert, Light-Emitting Diodes, "2" ^"nd" ed., Cambridge University Press, Cambridge, England, (2006).
[58]S. Nakamura, M. Senoh, N. Iwasa, S. I. Nagahama, “High-Brightness InGaN Blue Green and Yellow Light-Emitting Diodes wuth Quantum Well Structure,” Jpn. J. Appl. Phys., 34, pp.797-799 (1995).
[59]R. Mueller-Mach, G. O. Mueller, M. R. Krames, “Phosphors Materials and Combinations for Illumination Grade White pcLED,” Proc. SPIE., 5187, 115-122 (2004).
[60]孔祥仁,「高功率白光LED 封裝之螢光粉特性之研究」,中央大學光電科學與工程所,碩士論文,民國九十八年。
[61]何信穎,「白光LED之YAG螢光粉光學模型之研究」,中央大學光電科學與工程所,碩士論文,民國九十七年。
[62]N. Taskar, R. Bhargava, J. Barone, V. Chhabra, V. Chabra, D. Dorman, A. Ekimov, S. Herko, B. Kulkarni, “Quantum Confined Atom based Nanophosphors for Solid State Lighting,” Proc. SPIE, 5187, 133-141 (2004).
[63]Y. B. Acharyaa, P. D. Vyavahare, “Study on the temperature sensing capability of a light-emitting diode,” Sci. Instrum., 68, 4465 (1997).
[64]Y. J. Lee, C. J. Lee, C. H. Chen, “Estimating the Junction Temperature of InGaN and AlGaInP Light-Emitting Diodes,” Jpn. J. Appl. Phys., 50, 04DG18 (2011).
[65]G. N. Ellison, Thermal Computations for Electronic Equipment, Van Nostrand Reinhold, New York, 38 (1984).
[66]K. Laqual, W. H. Melhuish, M. Zander, “Molecular Absorption Spectroscopy, Ultraviolet and Visible (UV/VIS),” Pure Appl. Chem., 60, 1449-1460, (1988).
[67]C. C. Chen, C. Y. Chen, W. T. Chien, T. H. Yang, C. C. Sun, “Optical performance as a function of phosphor particle number in white LED,” Proc. SPIE., 7786, 778606-1 (2010).
[68]K. Y. Qian, J. Ma, W. Fu, Y. Luo, “Research on scattering properties of phosphor for high power white light emitting diode based on Mie scattering theory,” Acta Phys. Sin., 61, 204201 (2012).
[69]D. Toublanc, “Henyey–Greenstein and Mie phase functions in Monte Carlo radiative transfer computations,” Appl. Opti., 35, 3270-3274 (1996).
[70]D. Z.-Y. Ting, T. C. McGill, “Monte Carlo simulation of light-emitting diode light-extraction characteristics” Optics Engineering, 34, 3545 (1995).
[71]C. C. Chiang, M. S. Tsai, M. H. Hon, “Luminescent Properties of Cerium-Activated Garnet Series Phosphor: Structure and Temperature Effects,” J. Elec. Soc., 155, B517-B520 (2008).
[72]劉如熹,白光發光二極體製作技術-由晶粒金屬化至封裝,全華圖書股份有限公司,台北縣,中華民國九十七年。
[73]D. P. H. Hasselman, L. F. Johnson, “Effective thermal conductivity of composites with interfacial thermal barrier resistance,” J. Comp. Mater., 21, 508-515 (1987).
[74]Y. Benveniste, “Effective thermal conductivity of composites with a thermal contact resistance between the constituents: Nondilute case,” J. Appl. Phys., 61, 2840-2843 (1987).
[75]A. G. Every, Y. Tzou, D. P. H. Hasselman, R. Raj, “The effect of particle size on the thermal conductivity of ZnS/Diamond composites,” Acta. Metall. Mater., 40, pp.123-129 (1992).
[76]C. W. Nan, R. Birringer, D. R. Clarke, H. Gleiter, “Effective thermal conductivity of particulate composites with interfacial thermal resistance,” J. Appl. Phys., 81,6692-6700 (1997).
[77]EIA/JEDEC Standard : “EIA/JEDEC51-2”, Electronic Industries Alliance, Engineering Department, Arlington (1995).
[78]Y. Xi, E. F. Schubert, “Junction-temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method, ” Appl. Phys. Lett., 85,
2163 (2004).
[79]〖"EZBright" 〗^"TM" LED Handling and Packaging Recommendations.
[80]〖"Cree" 〗^"R" 〖"EZ700" 〗^"TM" Gen II LED Data Sheet CxxxEZ700-Sxx000-2.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔