跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/11 07:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張霈賢
研究生(外文):Pei-hsien Chang
論文名稱:底盤摩擦係數對剪力顆粒流動行為之影響
指導教授:蕭述三蕭述三引用關係
指導教授(外文):Shu-san Hsiau
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:144
中文關鍵詞:二維剪力槽庫葉流邊壁運動形式計算流體力學
相關次數:
  • 被引用被引用:0
  • 點閱點閱:283
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用計算流體力學軟體ANSYS FLUENT探討顆粒體在二維剪力槽中,不同邊壁驅動形式對於顆粒體動態行為的影響。二維剪力槽為一種環狀裝置,其目的是模擬兩無窮平板之間的粒子流動,而此種類型的流動,可以視為流體力學中的庫葉流(Couette Folw)。本研究模擬剪力槽內、外邊壁單獨轉動,內、外邊壁同時同向及反向轉動四種邊壁運動形式,模擬結果與過去發表的實驗結果比較後發現其結果相當吻合。
本論文亦以實驗方法探討剪力顆粒流中底盤粗糙度對粒子動態行為的影響,由實驗結果得知,當粗糙程度減小時,粒子的切向速度、粒子溫度會有較大值,此結果與過去文獻指出提升側邊壁的粗糙度來降低邊壁與粒子之間的滑移現象以提高粒子運動速度與粒子溫度,有著不同的結果。

Computational fluid dynamics software ANSYS FLUENT simulation method was used to investigate the granular dynamics in the two-dimensional shear cell with different rotational types in this study. The shear cell is a circular device and can be used to simulate the particle flow between two infinite flat plates. This type of flow can be regarded as the Couette folw. In this study we discuss the flow behaviors by rotating only inner wall or outer wall, the same direction rotation and inverse direction rotation, and we verify that the simulation results are in well agreement with the experimental results.
This study also applied experimental method to investigate the effect of roughness of bottom wall on the dynamic behavior in sheared granular flow. The results show that the roughness of bottom wall plays a crucial role in the dynamic properties. The result shows that the tangential velocity and granular temperature are reduced with the increase of roughness of bottom wall due to the larger energy dissipation. The results are different with the previous studies that the dynamic properties are enhanced with the increasing the roughness of the side wall.

摘要 I
附表目錄 V
附圖目錄 VI
符號說明 XI
第一章 緒論 1
1.1粒子流簡介 1
1.1.1顆粒體 1
1.1.2 粒子流特性 2
1.1.3粒子流的研究發展 4
1.1.4剪力粒子流研究發展 6
1.2邊壁摩擦效應 9
1.3研究動機與架構 10
第二章 數值模擬方法與理論依據 11
2.1模擬軟體 11
2.2多相流模型 11
2.3統御方程式 12
2.3.1連續方程式 12
2.3.2動量方程式 12
2.3.3能量守恆方程式 15
2.4 幾何外型 16
2.5 參數設定 16
2.6 邊界條件 16
2.7數值方法 17
第三章 實驗方法與原理 18
3.1 實驗設備 18
3.1.1 二維環狀剪力槽 18
3.1.2 顆粒體 19
3.1.3 觀測及量測儀器 20
3.2 實驗方法及原理 21
3.2.1 粒子溫度概念 21
3.2.2 影像處理分析方法 22
3.2.3 分析參數 23
3.3 實驗流程及步驟 25
3.3.1 實驗配置 25
3.3.2 實驗步驟 25
3.4 實驗誤差 27
第四章 模擬結果-與過去文獻之比較 29
4.1模擬切向速度分佈與實驗結果之比較 29
4.1.1內邊壁單獨轉動 29
4.1.2外邊壁單獨轉動 30
4.1.3內、外邊壁同時同向轉動 30
4.1.4內、外邊壁同時反向轉動 31
4.2固定邊壁速度,探討粒子切向速度與粒子佔有率變化之關係 31
4.3固定粒子佔有率,粒子速度與邊壁速度變化之比較 32
4.4粒子溫度之模擬結果 34
4.4.1固定粒子佔有率,粒子溫度與邊壁速度變化之關係 34
4.4.2固定邊壁速度,粒子溫度與粒子佔有率變化之關係 35
4.5動壓之模擬結果 35
第五章 實驗結果-底盤摩擦係數之影響 37
5.1底盤粗糙度對於切向速度與邊壁速度之影響 37
5.2相同邊壁速度下,底盤粗糙度與切向速度之關係 38
5.3固定邊壁速度,切向速度分佈與不同粒子佔有率之關係 39
5.4粒子溫度 41
5.4.1底盤粗糙度對於粒子溫度與邊壁速度之影響 41
5.4.2相同邊壁速度下,粒子溫度與底盤粗糙度之關係 42
5.4.3固定邊壁速度,粒子溫度與不同粒子佔有率之關係 42
第六章 結論 44
參考文獻 46

[1]Ennis, B. J., Green, J. and Davies, R. , 1994, “The legacy of neglect in the U.S.,” Chemical Engineering Progress, Vol. 90, pp. 32-43.
[2]Campbell, C. S., 1990, “Rapid granular flows”, Annual Review of Fluid Mechanics, Vol. 22, pp 57-92.
[3]Jaeger, H. M., and Nagel, S. R., 1992, “Physics of the granular state”, Science, Vol. 255, pp. 1523-1531.
[4]Jain, N., Ottino, J. M., and Lueptow, R. M., 2004, “Effect of interstitial fluid on a granular flowing layer,” Journal of Fluid Mechanics, Vol. 508, pp. 23-44.
[5]Gerald, H., 1999,“Pattern formation in granular materials,” Springer Verlag.
[6]Reynolds, O., 1885, “On the dilatancy of media composed of rigid particles in contact,” Philosophical Magazine, Vol. 20, pp. 469-481.
[7]Renolds, O., 1887, “Experiments showing dilatency, a property of granular materials possibly connected with gravitation,” Proceedings of the Royal. Institution of Great Britain, Vol. 51, pp. 218-227.
[8]Faraday M., 1831,“On a peculiar class of acoustical figures; and on certain forms assumed by a group of particles upon vibrating elastic surfaces,” Philosophical Transactions of the Royal Society (London), Vol. 121, pp. 299-318.
[9]Rosato, A., Strandburg, K. J., Prinz, F. and Swendsen, R. H., 1987, “Why the Brazil nuts are on top: size segregation of particulate matter by shaking,” Physical Review Letters, Vol.58, pp. 1038-1040.
[10]Ogawa, S., 1978, “Multi-temperature theory of granular materials,” In Proceedings of US-Japan Seminar on Continuum-Mechanical and Statistical Approaches in the Mechanics of Granular Materials, Tokyo.
[11]Coulomb, C., 1773, “Memoir de mathématique et de phy-sique”, Academie des Sciences, l'Imprimerie Royale, Paris Vol. 7 , p. 343-382.
[12]Rajchenbach, J., 1990, “Flow in powders:from discrete avalanches to continuous regime,” Physical Review Letters, Vol. 65, pp. 2221-2225.
[13]Santomaso, A., Olivi, M., and Canu, P., 2005, “Mixing kinetics of granular materials in drums operated in rolling and cataracting regime”, Powder Technology, Vol. 152, pp. 41-51.
[14]Savage, S. B. and Sayed, M., 1984, “Stresses developed by drycohesionless granular materials sheared in an annular shear cell”, Journal of Fluid Mechanics, Vol. 142, pp. 391-430
[15]Hanes, D. M., and Inman, D. L., 1985, “Observations of rapidly flowing granular fluid materials”, Journal of Fluid Mechanics, Vol. 150, pp. 357-380.
[16]Elliott, K. E., Ahmadi, G., and Kvasnak, W., 1998, “Couette flows of agranular monolayer-an experiment study,” Journal of Non-Newtonian Fluid Mech, Vol. 74 , pp. 89-111.
[17]Drake, T. G., 1991, “Granular flow:physical experiment and their implications for microstructural theories”, Journal of Fluid Mechanics, Vol. 225, pp. 121-152.
[18]Hsiau S. S. and Jang H. W., 1998, “Measurements of velocity fluctuations of granular materials in a shear cell”, Experimental Thermal and Fluid Science, Vol. 17, pp. 202-209.
[19]Campbell, C. S., and Brennen, C. E., 1985, “Couette flows of granular material:some computer simulations”, Transactions of the ASME, Vol. 52, pp. 172-178.
[20]Kim H. and Rosato A. D., 1992, “Particle simulations of the flow of smooth spheres between bumpy boundaries”, Micromechanics of Granular Materials Elsevier, pp. 91-100.
[21]Howell, D., and Behringer R. P., 1998, “Stress fluctuations in a 2D granular couette experiment:a continuous transition”, Physical Review Letters, Vol. 82, pp. 5241-5244.
[22]Veje, C. T., 1998, “Kinematic of a two-dimentional granular couette experiment at the transition to shearing”, Physical Review E, Vol.59, pp 739-745.
[23]Campbell, C. S., and Wang, D. G., 1992, “Renolds analogy for a shearing granular masterials”, Journal of Fluid Mechanics, Vol. 244, pp 527-546.
[24]Hsiau, S. S., and Yu H. Y., 1997, “Segregation phenomena in a shaker,” Powder Technology, Vol. 93, pp. 83-88.
[25]Zheng, X. M., and Hill, J. M., 1998, “Molecular dynamics simulation of granular flows:slip along rough inclined planes”, Computational Mechanics, Vol. 22, pp 160-166.
[26]Gabriel, l. T., 2005, “Wet-granulation research with application to scale-up,” China Particuology, Vol. 3, pp191-195.
[27]Hvorslev, M. J., 1936, “A ring shearing apparatus for the determination of the shearing resistance and plastic flow of soil” In Proc. Intl Conf. Soil Mech. Found. Engng, Cambridge, Mass., Vol. 2, pp. 125-129.
[28]Hvorslev, M. J., 1939. “Torsion shear tests and their place in the determination of shearing resistance of soils,” Proceedings of the American Society of Testing and Materials, Vol. 39, pp. 999-1022.
[29]Novosad, J., 1964, “Apparatus for measuring the dynamic angles of internal friction and external friction of a granular material,” Collection Czech. Chen. Commun., Vol. 29, pp. 2697-2701.
[30]Carr, J. F., and Walker, K. M., 1967, “An annular shear cell for granular materials,” Powder Technology, Vol. 1, pp. 369-373.
[31]Scarlett, B., and Todd, A. C., 1968, “A split ring annular shear cell for determination of the shear strength of a powder,” Scientific Instruments, Vol. 1, pp. 655-656.
[32]Stephens, D. J. and Bridgwater, J., 1978,“The mixing and segregation of cohesionless particulate materials,”Powder Technology., Vol. 21, pp. 17-44.
[33]Hsiau, S. S., and Yang W. L., 2002,“Stresses and transport phenomena in sheared granular flows with different wall conditions,” Physics of Fluids, Vol. 14, pp. 612-621.
[34]Jasti, V., and Higgs, C., 2008, “Experiment study of granular flows in a rough annular shear cell,” Physical Review E, Vol 78, pp. 0413061-0413067.
[35]Jasti, V., and Higgs, C., 2010,“ A fast first order model of a rough annular shear cell using cellular automata,” Granular Matter, Vol 12, pp. 97-106.
[36]Martin C. Marinack Jr., Venkata K. Jasti, Young Eun Choi, C. Fred Higgs III., 2011,“Couette grain flow experiments: the effects of the coefficient of restitution, global solid fraction, and materials,’’ Powder Technology, Vol. 211, Issue 1, Pages 144–155.
[37]Wang, D. M., and Zhou Y. H., 2009, “Shear profiles and velocity distribution in dense shear granular flow,” Chinese Physics Letters, Vol. 26, pp. 0245011-0245014.
[38]Koval, G., Roux, J., Corfdir, A., and Chevoir, F., 2009, “Annular shear of cohesionless granular materials:from the inertial to quasistatic regime,” Physical Review E, Vol. 59, pp. 0213061-02130616.
[39]Lu, L. S. and Hsiau, S. S., 2008, “DEM simulation of particle mixing in a sheared granular flow”, Particuology, Vol. 6,pp.445-454.
[40]Lim, E. W.,2010,“Granular leidenfrost effect in vibrated beds with bumpy surfaces”,European Physical Journal E, Vol.32, pp.365-375.
[41]Gidaspow, D., Bezburuah, R., Ding, J., 1992. “Hydrodynamics of circulating fluidized beds, kinetic theory approach. ” In: Fluidization, vol. VII, Proceedings of the 7th Engineering Foundation Conference on Fluidization, Brisbane, Australia, pp. 75–82.
[42]Schaeffer, D. G., 1987,“Instability in the evolution equations describing incompressible granular flow”, Journal of Differential Equations 66 (1), pp.19–50.
[43]Van Wachem B.G.M., Schouten J.C., Van den Bleek C.M., Krishna R., Sinclair J.L., 2001, “Comparative analysis of CFD models of dense gas–solid system”, AICHE Journal 47 (5) 1035-1051.
[44]Zang, S. J. and Yu, A. B., 2002, “Computational investigation of slugging behavior in gas-fluidised beds”, Power Technol.,123, p147-165.
[45]Gidaspow, D., 1994,“Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions”, Academic Press, New York.
[46]Demagh, Y., Ben Moussa, H., Lachi, M., Noui, S., Bordja, L., 2012, “Surface particle motions in rotating cylinders: Validation and similarity for an industrial scale kiln”, Powder Technology 224, p260–272.
[47]Richardson, J. R. and Zaki, W. N., 1954, “Sedimentation and fluidization: part I. trans. inst.”,Chem. Eng. Sci.,32, p35-53.
[48]Syamlal M., 1987,“The particle-particle drag term in a multiparticle model of fluidization”,Topical Report. Springfield: National Technical Information Service.
[49]Vasquze, S. A. and Ivanov, V. A., 2000, “A phase coupled method for solving multiphase problems on unstructured meshes”,In proceedings of ASME FEDSM:ASME 2000 Fluids Engineering division summer meeting, Boston.
[50]He Y. R., Chen H. S., Ding Y. L., and Lickiss B., 2007, “Solids motion and segregation of binary mixtures in a rotating drum mixer”, Institution of Chemical Engineers, Vol 85 (A7) 963–973.
[51]Huang, A. N., Kao, W. C., Kuo, H. P., 2013, “Numerical studies of particle segregation in a rotating drum based on Eulerian continuum approach”, Advanced Powder Technology 24 pp. 364–372
[52]Liao, C. C., Hsiau, S. S., Yu, W. J., 2012, “The influence of driving conditions on flow behavior in sheared granular flows”, International Journal of Multiphase Flow 46 pp. 22–31.
[53]Hsiau, S. S., Shiu J. Y., Yang W. L., 2005, “Influence of internal friction on transport properties in sheared granular flows”, American Institute of Chemical Engineers, Vol. 52, No. 10.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top