(34.204.185.54) 您好!臺灣時間:2021/04/11 05:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:廖冠翔
研究生(外文):Kuan-Hsiang Liao
論文名稱:模擬太陽能追蹤器位於地表和建築物屋頂的流場模擬
論文名稱(外文):Flow Simulation Over A Solar Tracker On The Ground Surface And On The Rooftop of A Building
指導教授:吳俊諆
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:83
中文關鍵詞:太陽追蹤器表面受力分布渦流曳放現象LES紊流模型
外文關鍵詞:Solar trackerforce distribution on surfacevortex sheddingLES turbulence model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:133
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
太陽追蹤器(solar tracker)安裝在戶外故需考量風力影響、表面受力分布及周圍流場現象,本文針對台灣地區追蹤器常見安裝位置(仰角α=30o,方位角ψ=0o-180o)進行模擬,數值解針對大型追蹤器置放於地面與在風洞的追蹤器模型實驗數據做比較,此外也分析太陽追蹤器置放於建築物平面屋頂時的氣流場。目前追蹤器的氣流場分析研究很缺乏,本文模擬旨在提供有意義的分析和增進對流場現象的瞭解。
本文以ANSYS FLUENT軟體模擬大型太陽追蹤器流場,論文的研究重點包括:比較LES紊流模型與RNG k-ε紊流模型模擬結果不同、計算太陽光電板表面截線壓力係數(cp)分布、上下表面合力及合扭矩及特定方位角產生的渦流曳放現象,並探討大型追蹤器置放於地面及建築物平面屋頂時之流場差異。
研究發現LES紊流模型相較於RNG k-ε紊流模型,對追蹤器表面的cp分布更能有效預測,對渦流的預測範圍更廣泛且較合理,故本文採用LES紊流模型。其中紊流數值解對大型追蹤器置放於地面的迎風面cp分布與追蹤器模型置放於地面實驗數據相當吻合,背風面數值解與實驗值二者的變化趨勢大致相仿。考量建築物影響時,大型追蹤器置放於建築物平面屋頂位於仰角α=30o,與不同方位角(ψ=0o、30o及150o),追蹤器後方會產生渦流曳放現象,而大型追蹤器置放於地面對應發生渦流曳放的方位角則略為不同(ψ=60o及150o)。紊流數值解對斜面30o屋頂與大型追蹤器置放於建築物平面屋頂ψ=0o, α=30o呈現明顯不同流場特性,斜面屋頂表面徑線沿屋頂上表面爬升且屋頂左右兩側流速極快;大型追蹤器置放於建築物平面屋頂受建築物干擾影響明顯,徑線圖顯示大型追蹤器周圍有渦流,約大型追蹤器高度2 m以上為流速較快區域。

It is common that the solar tracker installed with elevation angle (α) and azimuth angle (ψ) corresponding to the values of 30o and 0o-180o respectively in Taiwan. As the solar tracker is operated outdoor, it is important to consider effects of the wind load on surface and aerodynamics around it. This numerical simulation analyzed and compared two cases (the full-scale large tracker installed on ground and its reduced model in wind tunnel). In addition, the aerodynamics of the same full-scale large tracker installed on the flat roof of a four-story building was simulated. Because of short of research in aerodynamics of solar tracker, this study aims to provide meaningful analysis and enhance the understanding of flow physics over solar tracker.
This study used ANSYS FLUENT to simulate the flow over solar tracker and several issues were investigated, including comparison between LES and RNG k-ε turbulence models, the distribution of pressure coefficient (cp) on the photovoltaic (PV) panel, resulting aerodynamics forces and moments over the PV panel, and vortex shedding on specific azimuth angles. The comparison between the large solar tracker installed on the ground and on the rooftop of building was focused on their flow characteristics.
Results shown that prediction with LES model can resolve better in cp and capture wide variation of vortex. Accordingly, this paper uses the LES turbulence model. Numerical solutions of windward surface of the large tracker on ground were in good agreement with its reduced model in wind tunnel experiment. Considering building effect on the solar tracker, vortex shedding was predicted occur at downstream of large tracker at 30o elevation angle and different azimuth angles (ψ=0o, 30o and 150o), while the vortex shedding occur at ψ=60o and 150o when the solar tracker placed on ground. Turbulent simulation shown significant difference between the building with inclined roof of 30o and the tracker placed on the building with flat roof at 30o elevation angle. Very fast flow at the lateral sides of inclined roof and the flow pathline stretch above the inclined surface was predicted. While the case of tracker installed on the building, due to interference of building on the tracker, there were vortices surround the tracker and a region of higher velocity at 2 m above the tracker.

摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 vii
表目錄 xiv
符號說明 xv
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 表面受力分析 2
1.2.2 周圍流場型態 7
1.2.3 入口速度分布 12
1.3 研究動機與目的 14
1.4 論文架構 14
第二章 數值模擬方法 15
2.1計算流體力學簡介 15
2.2 幾何外型及基本假設 15
2.3 統御方程式 17
2.4紊流模型 18
2.4.1 RNG k-ε紊流模型 18
2.4.2 Large Eddy Simulation (LES)紊流模型 20
2.4.2.1 篩選之納維-斯托克斯方程式(Filtered N-S Equation) 20
2.4.2.2 Smagorinsky-Lilly模型 21
2.4.2.3 入口邊界條件 21
2.5 壁面函數 22
2.6 邊界條件 24
2.7 數值模擬 25
2.7.1 壓力與速度耦合 26
2.7.2 網格生成 27
2.7.3 收斂標準 28
第三章 數值模擬驗證 29
3.1 網格獨立性測試 29
3.2 模擬驗證 31
3.2.1 RNG k-ε模擬驗證 31
第四章 結果與討論 38
4.1. LES與RNG k-ε紊流模型模擬比較 38
4.2 不同方位角表面截線cp與流場特性 45
4.2.1 大型追蹤器置放於地面 45
4.2.2 大型追蹤器置放於建築物平面屋頂 59
4.3 不同方位角受力分析 67
4.4 斜面屋頂與大型追蹤器置放於建築物平面屋頂流場比較 74
第五章 結論 77
5.1 結論 77
5.2 未來建議 79
參考文獻 81

ANSYS, “ANSYS FLUENT theory guide,” ANSYS, Inc., 2009.
ANSYS, “ANSYS FLUENT user’s guide,” ANSYS, Inc., 2009.
ASCE/SEI 7-05, American Society of Civil Engineers, 2005.
Bakic, V.V., Zivkovic, G.S., Pezo, M.L., “Numerical simulation of the air flow around the arrays of solar collectors,” Thermal Science, 15(2):457-465, 2011.
Bitsuamlak, G.T., Dagnew, A.K., Erwin, J., “Evaluation of wind loads on solar panel modules using CFD,” 5th International Symposium on Computational Wind Engineering (CWE2010), Chapel Hill, North Carolina, USA, 23th-27th, May, 2010.
Bronkhorst, A., Franke, J., Geurts, C., Bentum, C.V., Grepinet, F., “Wind tunnel and CFD modeling of wind pressures on solar energy systems on flat roofs,” 5th International Symposium on Computational Wind Engineering (CWE2010), Chapel Hill, North Carolina, USA, 23th-27th, May, 2010.
Cabanillas, J., “The wind and the panacea of the stow position in the solar trackers,” www.titantracker.es, accessed 15th, March, 2010.
Chang, K.C., Hsu, U.K., Wang, W.C., Tyan, R.H., “Flow visualization and wind uplift analysis of a suspended solar water heater,” Procedia Engineering, 31:3-8, 2012.
Christo, F.C., “Numerical modeling of wind and dust patterns around a full-scale paraboloidal solar dish,” Renewable Energy, 39:356-366, 2012.
Cosoiu, C., Damian, A., Damian, R., Degeratu, M., “Numerical and experimental investigation of wind induced pressures on a photovoltaic solar panel,” 4th IASME/WSEAS International Conference on Energy, Environment, Ecosystems and Sustainable Development, Algarve, Portugal, 74-80, 2008.
Costola, D., Blocken, B., Hensen, J.L.M., “Overview of pressure coefficient data in building energy simulation and airflow network programs,” Building and Environment, 44(10):2027-2036, 2009.
Gong, B., Li, Z.N., Wang, Z.F., Wang, Y.G., “Wind-induced dynamic response of heliostat,” Renewable Energy, 38:206-213, 2012.
EN 1991-1-4, European Committee for Standardisation, 2004.
Hernández, S., Méndez, J., Nieto, F., Jurado, J.Á., “Aerodynamic analysis of a photovoltaic solar tracker,” EACWE 5, Florence, Italy, 19th-23rd, July, 2009.
Kopp, G.A., Surry, D., Mans, C., “Wind effects of parapets on low buildings: Part 1. Basic aerodynamics and local loads,” J. Wind Engineering and Industrial Aerodynamics, 93: 817-841, 2005.
Meroney, R.N., Neff, D.E., “Wind effects on roof-mounted solar photovoltaic arrays: CFD and wind-tunnel evaluation,” The Fifth International Symposium on Computational Wind Engineering (CWE2010), Chapel Hill, North Carolina, USA, 23th-27th, May, 2010.
Messenger, R.A., Ventre, J., Photovoltaic Systems Engineering, 3rd ed., Taylor & Francis, 2010.
Peterka, J.A., Bienkiewicz, B., Hosoya, N., Cermak, J.E., “Heliostat mean wind load reduction,” Energy, 12(3):261-267, 1987.
Pfahl, A., Buselmeier, M., Zaschke, M., “Wind loads on heliostats and photovoltaic trackers of various aspect ratios,” Solar Energy, 85:2185–2201, 2011.
Scaletchi, I., Visa, I., Velicu, R., “Modeling wind action on solar tracking PV platforms,” Bulletin of the Transilvania University of Brasov, 3(52):115-122, 2010.
Shademan, M., Hangan, H., “Wind loading on solar panels at different inclination angles,” 11th American Conference on Wind Engineering, San Juan, Puerto Rico, 22th-26th, June, 2009.
Sharan, A.M., “Determination of bearing loads due to wind in solar tracking systems,” J. Solar Energy Engineering, 126:668-670, 2004.
Tamura, T., “Large eddy simulation on building aerodynamics,” The Seventh Asia-Pacific Conference on Wind Engineering, Taipei, Taiwan, 8th-12th, November, 2009.
Van Uffelen, G.M., “Reducing the wind loads—wind tunnel study approach,” Sun & Wind Energy, November, 2012.
Vasies, G., Axinte, E., Teleman, E.C., “Numerical simulation of wind action on solar panel placed on flat roofs with and without parapet,” 2012.
Velicu, R., Moldovean, G., Scaleţchi, I., Butuc, B.R., “Wind loads on an azimuthal photovoltaic platform,” Experimental study, (ICREPQ’10), Granada, Spain, 23th-25th, March, 2010.
Wang, Y.G., Li, Z.N., Gong, B., Li, Q.S., “Wind pressure and wind-induced vibration of heliostat,” Key Engineering Materials, 400-402:935-940, 2009.
Wu, Z.Y., Gong, B., Wang, Z.F., Li, Z.N., Zang, C.C., “An experimental and numerical study of the gap effect on wind load on heliostat,” Renewable Energy, 35:797-806, 2010.
Zang, C.C., Wang Z.F., Liu, X.B., “Design and analysis of a novel heliostat structure,” IEEE International Conference on Sustainable Power Generation and Supply, 2009.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔