跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/11 04:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭碩漢
研究生(外文):Shuo-han Cheng
論文名稱:溶膠凝膠法製備(2.0 at.%)鎵與(0.0~1.0 at.%)鈦共摻之氧化鋅薄膜並研究其光電特性
論文名稱(外文):On the (0.0 ~1.0 at.%) Ti, (2.0 at.%) Ga co-doped ZnO thin films prepared by sol-gel method and their optical and electrical properties
指導教授:林景崎
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:141
中文關鍵詞:溶膠凝膠法旋轉塗佈技術鈦鎵共摻雜氧化鋅薄膜電阻率透光率結構
外文關鍵詞:Sol-Gel methodSpin-CoatingTGZO thin filmsResistivityTransmittanceStructure
相關次數:
  • 被引用被引用:2
  • 點閱點閱:199
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文採用溶膠-凝膠法搭配旋轉塗佈技術,在玻璃基板上成功製備出摻0~4 at.% 鎵(GZO)、摻0~1 at.%鈦(TZO)與共同摻入0.0 ~1.0 at.%鈦和2 at.%鎵之氧化鋅(Ti, Ga co-doped zinc oxides, TGZO)透明氧化物薄膜,進而研究薄膜之微結構與光電特性。薄膜的表面與橫斷面形貌藉由SEM觀察,結果顯示:純氧化鋅薄膜隨著摻鎵、摻鈦及共摻都皆有晶粒細化現象。晶體結構由XRD分析得知:薄膜皆為六方晶系纖維鋅礦結構,以C軸優選方向,可依Scherrer公式估計其晶粒大小,與SEM觀察印證。鈦、鎵共摻薄膜之晶粒,隨摻鈦量由0增加至1 at.%,其尺寸由16減小至13nm,稍有細化現象。Raman分析佐證出氧化鋅薄膜摻雜造成晶粒細化現象。AFM分析顯示:鈦、鎵共摻薄膜中摻鈦濃度由0增至1.0% 會降低其表面粗糙度。XPS分析鎵、鈦共摻薄膜,顯示所摻雜的鎵之化學狀態為Ga2O3(Ga3+);而及所摻雜的鈦則為TiO2(Ti4+)。薄膜光學性質經UV-Vis光譜儀進行分析,結果得知: 摻鎵薄膜平均透光率約82%、摻鈦者為89%,共摻者約88%;薄膜之電阻率則用四點探針量測、載子濃度和載子移動率則由霍爾分析儀鑑定,結果顯示: 氧化鋅摻2 at.%鎵之有一最低電阻率(約13 Ω cm)、摻0.5 at.%鈦之薄膜有一最低電阻率(約59 Ω cm),共摻2 at.%鎵與1 at.% 鈦薄膜則其透光率增高至91%而電阻率則降至7.35 Ω cm。
Transparent conductive zinc oxide (ZnO) thin films singly doped with 0.0~4.0 at.% Ga (GZO), 0.0~4.0 at.% Ti (TZO) and co-doped 2 at.% Ga with 0.25, 0.50, 0.75 and 1.00 at.% Ti were prepared on glass substrates by sol-gel method by means of spin-coating. The microstructure, optical, and electrical properties of GZO, TZO and TGZO films were investigated. Through examination by scanning electron microscope (SEM), we found that the surface and cross-sectional morphology indicated grain refinement in the doped films in comparison with the pure ZnO. Analysis of X-ray diffraction (XRD) revealed all the films belonged to wurtzite structure preferred along c-axis and their grain size estimated by Scherrer’s formula was consistent with that observed by SEM. Avereage grain size in TGZO decreased form 16 to 13 nm with increasing Ti-dopant from 0 to 1 at.%. This grain refinement was confirmed with the Raman spectra. Measurement by atomic force microscope indicated that TGZO decreased the surface roughnss with increasing Ti-content from 0 to 1.0 at.%. X-ray photoelectron spectroscopy (XPS) spectra of the TGZO films showed that the binding energy located at 1118.5 eV responsible for Ga3+and that located at 458.7 eV responsible for Ti4+. The electrical properties such as resistivity, carrier concentration, and Hall mobility were detected by four-point probe and Hall measurements. Optical transmittance measured by UV-Vis spectrophotometer indicated 82% for GZO, 89% for TZO and 88% for TGZO. The resistivity was measured at 13 Ω cm for GZO doped with 2 at.%Ga, at 59 Ω cm for TZO doped with 0.5 at.%Ti, at 7.35 Ω cm for T1.00G2.0ZO co-doped 2 at.% Ga with 1 at.% Ti.
摘 要 i
Abstract iii
誌 謝 iv
目 錄 v
表目錄 x
圖目錄 x
一、緒 論 1
1-1 前言 1
1-2 研究動機、目的與目標 2
二、基礎理論與文獻回顧 5
2-1 氧化鋅簡介 5
2-2 氧化鋅之異質元素摻雜 6
2-3 溶膠凝膠法製備氧化鋅文獻回顧 7
2-4 摻鎵氧化鋅薄膜之文獻回顧 10
2-5 摻鈦氧化鋅薄膜之文獻回顧 12
2-6 溶膠-凝膠法 13
2-7各項以溶膠凝膠法製備薄膜方法 17
三、研究方法 21
3-1 實驗規劃 21
3-2 實驗藥品、裝置 22
3-2-1 實驗藥品 22
3-2-2 實驗裝置 22
3-3 實驗步驟 22
3-3-1 試片清洗 22
3-3-2 前驅物合成及薄膜製備 23
3-4分析儀器與分析方法 24
3-4-1 前驅物溶液之pH值分析 24
3-4-2 氧化鋅前驅物溶膠材料熱分析 25
3-4-3 低掠角X-ray繞射分析儀 25
3-4-4 拉曼光譜分析儀 26
3-4-5薄膜表面形貌觀察 26
3-4-6 薄膜表面粗糙度之原子力顯微鏡分析 26
3-4-7 薄膜紫外-可見光穿透率分析 27
3-4-8 薄膜表面電阻之四點探針測量 27
3-4-9 薄膜載子濃度及載子移動率之霍爾量測 28
3-4-10 薄膜之化學狀態分析 29
3-4-11 穿透式電子顯微鏡結構分析 29
3-4-12 電化學實驗 30
3-4-13 薄膜光電化學分析 30
四、結果 31
4-1 溶膠凝膠法製備氧化鋅薄膜之關鍵參數選定 31
4-1-1 溶膠pH控制 31
4-1-2溶膠凝膠旋塗膜之熱重分析 31
4-2 GZO、TZO、TGZO薄膜結構與成分分析 31
4-2-1 XRD 分析 31
4-2-1-1 GZO 薄膜 31
4-2-1-2 TZO 薄膜 33
4-2-1-3 TGZO薄膜 34
4-2-2 FE-SEM分析 35
4-2-2-1 GZO薄膜 35
4-2-2-2 TZO薄膜 35
4-2-2-3 TGZO薄膜 36
4-2-3 Raman光譜分析 36
4-2-4 薄膜表面粗糙度分析 37
4-2-5 薄膜化學元素鍵結能分析 37
4-2-5-1 GZO薄膜 37
4-2-5-2 TGZO薄膜 38
4-2-6 TEM 分析 39
4-3 GZO、TZO、TGZO薄膜性質分析 40
4-3-1 UV-Vis 透光性分析 40
4-3-1-1 GZO薄膜 40
4-3-1-2 TZO薄膜 40
4-3-1-3 TGZO薄膜 41
4-3-2薄膜能隙估算 41
4-3-2-1 GZO薄膜 41
4-3-2-2 TZO薄膜 42
4-3-2-3 TGZO薄膜 43
4-3-3 薄膜電性量測 43
4-3-3-1 GZO薄膜 43
4-3-3-2 TZO薄膜 44
4-3-3-3 TGZO薄膜 44
4-4 TGZO薄膜腐蝕與光觸媒分析 45
4-4-1 TGZO薄膜腐蝕分析 45
4-4-1-1 線性極化法 45
4-4-1-2 Tafel極化法 46
4-4-1-3交流阻抗頻譜分析 46
4-4-2 光觸媒分析 47
五、討論 48
5-1溶膠凝膠法之pH值與塗佈薄膜之熱處理溫度選定 48
5-1-1 pH值選定 48
5-1-2探討溶凝膠之熱分析(TGA)的影響 48
5-2 摻雜不同金屬元素對透明導電膜的影響 49
5-2-1薄膜結構與組成 49
5-2-2薄膜光性與電性分析 51
5-3鈦(0~1 at.%)、鎵(2 at.%)共摻雜(TGZO)薄膜討論 54
5-3-1薄膜結構與組成 54
5-3-2薄膜光學性質與電性質 57
5-3-3 薄膜電化學實驗 59
六、結論 61
七、未來展望 63
參考文獻 64

[1] H. W. Lee, S. P. Lau, Y. G. Wang, Journal of Crystal Growth 268, 596-601 (2004).
[2] 許國銓,”科技玻璃-高性能透明導電玻璃”, 材料與社會,84期,110-119.
[3] 溫志中,”ITO透明導電膜之濺鍍技術發展”, 工業材料,166期,民國89年.
[4] I. Petrov, V. Orlinov, A. Misiuk, Thin Solid Films , 120, 55-67 (1984)
[5] K. H. Kim, K. C. Park, Ma DYJ, Appl Phys , 81, 7764-7772 (1997).
[6] A. A. Dakhel, F. Z. Henari, Crystal Research and Technology , 38, 975- 985(2003).
[7] M. Snure and A. Tiwari J. Appl. Phys. 101, 124912 (2007)
[8] Z. F. Liu, F. K. Shan, J. Y. Sohn, B. C. Shin, Y. S. Yu, S. C. Kim, Y. X. Li, J. Kor. Phys. Soc., 44, 1123–1127 (2004).
[9] I. Soumahoro, R. Moubah, G. Schmerber, S. Coils, M. Ait Aouaj, M. Abd- lefdil, N. Hassanain, A. Berrada, A. Dinia, Thin Soild Films,518, 4593-4596 (2010).
[10] H. M. Suarez, A. Maldonado, Applied Surface Science , 193, 52 (2002).
[11] D. M. Zhu, K. Li, F. Luo, W. C. Zhou, Applied Surface Science, 255, 6145 – 6148 (2009).
[12] M. Z. Gao, X. N. Wu, J. Liu, W. B. Liu, Applied Surface Science , 257, 6919- 6922 (2011).
[13] K. U. Sim, S. W. Shin, A. V. Moholkar, J. H. Yun, J. H. Moon, J. H. Kim, Current Applied Physics , 10, S463–S467 (2010)
[14] C. S. Hong, H. H. Park, Jooho Moon, H. H. Park, Thin Solid Films , 515, 957–960 (2006).
[15] S. H. Park, J. B. Park, P. K. Song, Current Applied Physics , 10, S488–S490 (2010).
[16] Ionic radii data, http://www.webelements.com/
[17] S. D. Kirby, R. B. Van Dover, Thin Solid Films, 517, 1958–1960 (2009).
[18] S. Suzuki, T. Miyata, M. Ishii, T. Minami, Thin Solid Films, 434, 14–19 (2003).
[19] W. Lee, S. Shin, D. R. Jung, J. Kim, C. Nahm, T. Moon, B. Park, Current Applied, 12,628-631 (2012)
[20] 黃聖壹,”摻2 at.%錫氧化鋅奈米管陣列之電化學製備及其結構與特性探討”,中央大學,碩士論文,民國101年。
[21] B. Meyer, D. Marx, Physical Review B, 67, 35403, (2003)
[22] W. Yang, Z. Liu,Applied Surface Science , 255, 5669-5673 (2009).
[23] S. J. Pearton, D. P. Norton, K. lp, Y. W. Heo, T. Steiner, J. Vac. Sci. Technol. B, 22, 3, 932-948 (2004).
[24] 溫慧怡,「高長寬比氧化鋅奈米柱之生成-氫氣後處理效應研究」,國立成功大學,碩士論文,民國 92 年。
[25] 林志誠,「以脈衝式電流電化學沉積法」,國立成功大學,碩士論文,民國 96 年。
[26] 邱晉億,「低維度奈米結構氧化鋅之製備與特性量測」,南台科技大學,碩士論文,民國 95 年。
[27] Y. Chen, D. M. Bagnall, H. Koh, K. Park, Z. Zhu, T. Yao, Journal of Applied Physics, 84, 3912 (1998).
[28] Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H.Koinuma, Y. Segawa, Applied Physics Letters, 72, 3270 (1998).
[29] B. K. Choi, D. H. Chang, Y. S. Yoon, S. J. Kang, Journal of Materials Science: Materials in Electronics, 17, 1011-1015 (2006)
[30] D. Redfield, Applied Physics Letters 25, 634 (1974).
[31] P. M. Verghese, D. R. Clarke, Journal of Materials Research., 14, 3 (1999).
[32] Z. Liu, Y. Liu, H. Yang, Y. Yang, G. Shen, R. Yu, Electroanalysis,, 17, 1065-1070, (2005)
[33] N. Al-Hardan, M. J. Abdullah, A. Abdul Aziz, Applied Surface Science, 257, 8993-8997 (2011).
[34] A. Banerjee, T. R. Ramamoha, M. J. Patni, Materials Research Bulleton, 36, 1259-1267 (2001).
[35] H. Aguraa, A. Suzukia, T. Matsushitaa, T. Aokia, M. Okudab, Thin Solid Films, 445, 263–267, (2003)
[36] J. A. M. AbuShama, S. Johnston, T. Moriarty, G. Teeter, K. Ramanathan, R. Noufi, Progress in Photovoltaics: Research and Applications, 12, 39–45, (2004)
[37] Y. Hames, Z. Alpaslan, A. K. Semen, S. E. San, Y. Yerli, Solar Energy, 84, 426–431, (2010)
[38] Y. Ogawa, S. Fujihara, Physica Status Solidi (a), 202, 1825-1828, (2005)
[39] R. Konenkamp, R. C. Word, M. Godinez , Nano Letters, 5, 10, (2005)
[40] H. Sun, Q. F. Zhang, J. L. Wu, Nanotechnology, 17, 2271–2274, (2006)
[41] H. Guo, J. Zhou, Z. Lin, Electrochemistry Communications, 10, 146–150, (2008)
[42] Q. Zhang, H. Guo, Z. F. Feng, Electrochimica Acta, 55, 4889–4894, (2010)
[43] F. K. Shan, B. I. Kim, G.X. Liu, Z. F. Liu, J. Y. Sohn, W. J. Lee, B. C. Shin and Y. S. Yu, J.Appl.Phys., 95, 9 (2004)
[44] B. Y. Oh, M. C. Jeong, W. Lee, and J. M. Myoung, Journal of Crystal Growth, 274, 453–457, (2005)
[45] L. Dghoughi, F. Ouachtari, M. Addou, B. Elidrissi, H. Erguig, A. Rmili, A. Bouaoud, Physica B, 405, 2277, (2010)
[46] J. H. Lee, C. Y. Chou, Z. Bi, C. F. Tsai, H. Wang, Nanotechnology, 20, 395704, (2009)
[47] S. Y. Kuo, W. C. Chen, F. I Lai, C. P. Cheng, H. C. Kuo, S. C. Wang, W.F. Hsieh, Journal of Crystal Growth , 287, 78-84 (2006)
[48] C.Yasemin, C. Müjdat, Saliha Ilican, Current Applied Physics , 12 963-968 (2012)
[49] D. Y. Ku, I. H. Kim, I. Lee, K. S. Lee, T. S. Lee, J. h. Jeong, B. Cheong, Y. J. Baik, W. M. Kim, Thin Solid Films, 515, 1364–1369, (2006)
[50] M. A. Lucio-Lopez, M. A. Luna-Arias, A. Maldonado, M. de la, L. Olvera, D. R. Acosta, Solar Energy Materials and Solar Cells, 90, 733, (2006)
[51] S. Ilican, Y. Caglar, M. Caglar, F. Yakuphanoglu, Physica E, 35, 131, (2006)
[52] 洪文進 許登貴 萬明安 郭書瑋 蘇昭瑾," ITO 透明導電薄膜:從發展與應用到製備與分析,CHEMISTRY. , 63, 409~418 (2005).
[53] 顏子翊,「以溶膠凝膠法製備非晶 IGZO 薄膜及其在薄膜電晶體之應用」,逢甲大學,碩士論文,民國98年
[54] T. Minami, H. Sato, H. Nanto, S. Takata, Japanese journal of applied physics, 24, 10, L781-784 (1985).
[55] 鍾政霖,「氧化鋅摻鈦透明導電薄膜之性質研究」,國立中央大學,碩士論文,民國97年。
[56] K. Huang, Z. Tang, L. Zhanga, J. Yu, J. Lv, X. Liuc, F Liu, Applied Surface Science , 258, 3710– 3713 (2012)
[57] H. Sato, T. Minami, S. Takata, J. Vac. Sci. Technol. A, 11, 6, 2975-2979 (1993).
[58] S. Sakohara, L. D. Tickanen, M. A. Firing, J. Phys. Chem., 96, 111086-11091 (1992).
[59] Y. Takahashi, M. Kanamori, A. Kondoh, H. Minoura, Y. Ohya, Jpn. J. Phys., 33, 6611-6615 (1994).
[60] M. N. Kamalasanan, S. Chandra, Thin Solid Films, 288, 112-115 (1996).
[61] M. Ohyama, H. Kouzuka, T. Yoko,Thin Soild Films, 306, 78-85 (1997)
[62] D. Bao, H. Gu, A. Kuang, Thin Solid Flms, 312, 37-39 (1998).
[63] Y. Natsume, H. Sakata, Thin Solid Films, 372, 30-36 (2002).
[64] S. Bandyopandhyay, G. K. Paul, R. Roy, S. K. Sen, S. Sen, Materials Chemistry and Physics, 74, 83-91 (2002).
[65] M. H. Aslan, A. Y. Oral, E. Mensur, A. Gui, E. Basaran, Solar Energy Materials and Solar Cells, 82, 543-552 (2004).
[66] 范凱雄,「氧化鋯鋅溶凝膠薄膜之製備及其在薄膜電晶體支應用研究」,逢甲大學,碩士論文,民國96年。
[67] S. H. Yoon, D. Liu, D. Shen, M. Park , D. J. Kim, J Mater Sci , 43,6177–6181(2008).
[68] V. Fathollahi, M. Mohammadpour Amini, Materials Letters , 50, 235–239 (2001).
[69] K. Y. Cheng, Norani Muti, S. Roy Ramanan, Thin Soild Films, 410, 142-146 (2002).
[70] H. Gomez, A. Maldonado, M. de la L. Olvera, D.R. Acosta, Solar Energy Materials & Solar Cells, 87, 107–116 (2005).
[71] M. J. Lee, J. Lim, J. Bang, W. Lee, J. M. Myoung, Applied Surface Science, 255, 3195-3200 (2008).
[72] W. J. Park, H. S. Shin, B . D. Ahn, G. H. Kim, S. M. Lee, K. H. Kim, H. J. Kim, Applied Physics Letters , 93, 083508 (2008).
[73] P. K Nayak, J. Yang, J. Kim, S. Chung, J. Jeong, C. Lee and Y. Hong, J. Phys. D: Appl. Phys., 42, 035102 (2009).
[74] A. Kalaivanan, S. Perumal, N. Neelakanda Pillai , K.R. Murali, Materials Science in Semiconductor Processing , 14, 94–96 (2011)
[75] C. Y. Tsay, K. S. Fan, C. M. Lei, Journal of Alloys and Compounds, 512, 216-222 (2012).
[76] Y. M. Lu, C. M. Chang, S. I Tsai, T. S. Wey, Thin Solid Films , 447 –448, 56–60 (2004).
[77] S. S. Lin, J. L. Huang, P. Sˇ ajgalik, Surface &Coatings Technology, 191, 286– 292 (2005).
[78] J. J. Lu, Y. M. Lu, S. I. Tasi, T. L. Hsiung, H. P. Wang, L. Y. Jang, Optical Materials, 29, 1548–1552 (2007).
[79] C.Y. Tsay, H. C. Cheng, C. Y. Chen, K. J. Yang, C. K. Lin, Thin Solid Films, 518, 1603–1606 (2009).
[80] H. P. Chang, F. H. Wang, J. C. Chao, C. C. Huang, H. W. Liu, Current Applied Physics, 11, S185-S190 (2011).
[81] H. Chen, J. Ding, S. Ma, Superlattices and Microstructures, 49, 176–182 (2011).
[82] H. Chen, J. Ding, F. Shi, Y. Li, Wenge Guo, Journal of Alloys and Compounds, 534, 59–63 (2012).
[83] Y. C. Tseng, Y. J. Lin, H. C.Chang, Y. H. Chen, C. J. Liu, Y. Y. Zou, Journal of Luminescence, 132, 491–494 (2012).
[84] Z. Y. Zhong, T. Zhang, Materials Letters, 96, 237–239 (2013).
[85] 蔡裕榮, 周禮君,“以溶膠凝膠法製備透明導電氧化物薄膜的探討”, CHEMISTRY, 60, 3, 307~318 (2002).
[86] 陳慧英, 黃定加, 朱晴億,“溶膠凝膠法在薄膜製備上之應用”, 化工技術, 7, 11, 152-167 (1999).
[87] B. L. Cushing, V. L. Kolesnichenko, C. J. O’Connor, Chem.Rev., 104, 3893 (2004).
[88] S. L. Hellstrom,” Basic Models of Spin Coating”, 2007.
[89] 辜聖閎,”利用溶膠-凝膠法製備p型Al摻雜ZnO:N薄膜並探討其結構、光學與電性質”,國立臺灣科技大學,碩士論文,民國100年。
[90] 汪建民,材料分析,中國材料科學年會,台灣新竹,民國87年。
[91] XPS : http://www.lasurface.com/database/elementxps.php
[92] D. P. Joseph, T. P. David, S. P. Raja, C. Venkateswaran,Materials Characterization,59,1137-1139 (2008).
[93] Base, Jr. C. F., Mesmer, R. E., Krieger Pub., Florida, USA , (1986).
[94] L. Znaidia, G. J. A. A. Soler Illia, S. Benyahiaa, C. Sanchezb, A. V. Kanaev, Thin Solid Films, 428, 257–262 (2003).
[95] T. V. Vimalkumar, N. Poornima, K. B. Jinesh, C. Sudha Kartha, K.P. Vijayakumar, Appl. Surf. Sci ,. 257, 8334–8340 (2011).
[96] S. Ilican, M. Caglar, Y. Caglar, Applied Surface Science, 256, 7204–7210 (2010).
[97] L. G. Ma, S. Y. Ma, H. X. Chen, X. Q. Ai, X. L. Huang, Applied Surface Science, 257, 10036–10041(2011).
[98] O. Lupan, T. Pauporte, L. Chow, B. Viana, F. Pelle, L.K. Ono, B. Roldan Cuenya, H.Heinrich, Applied Surface Science , 256, 1895–1907 (2010).
[99] R. Yousefi, B. Kamaluddin, Appl. Surf. Sci., 255, 9376–9380 (2009).
[100] Z. Pan, X. Tian, S. Wu, C. Xiao, Z. Li, J. Deng, G. Hua, Z. Wei, Superlattices and Microstructures, 54, 107–117 (2013).
[101] S. Mridha and D. Basak 2007 J. Phys. D: Appl. Phys., 40, 6902
[102] R. Jothilakshmi, V. Ramakrishnan, R. Thangavel, J. Kumar, A. Sarua, M. Kuball, J. Raman Spectroscopy, 40, 556-561 (2009).
[103] T. Wei, P. Lan, Y. Yang, X. Zhang, R. Tan, Y. Li, W. Song, Applied Surface Science , 263, 210–214 (2012).
[104] J. Liu, X. Zhao, L. Duan, H. Sun, X. Bai, L. Chen, C. Chen, Applied Surface Science, 258, 6297– 6301 (2012).
[105] T. Bak, J. Nowotny, M. Rekas, C. C. Sorrell, Int. J. of Hydrogen Energy, 27 (2002) 991–1022

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top