(3.230.76.48) 您好!臺灣時間:2021/04/11 08:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張皓瑋
研究生(外文):Hao-wei Chang
論文名稱:電解液對電化學矽加工影響性之分析與研究
論文名稱(外文):The Analysis and Research of Machining P-type Silicon in different Electrolytes by Electrochemical Machining
指導教授:洪勵吾
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:86
中文關鍵詞:電化學加工P型矽基板氟化銨
相關次數:
  • 被引用被引用:2
  • 點閱點閱:164
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
在眾多非傳統加工中,電化學加工(Electrohemical Machining,
ECM)擁有加工速度快、無表面應力集中以及表面粗糙度佳的優勢,具有相當的發展潛力和高附加價值。
  本實驗採用直徑50μm以及100μm之碳化鎢棒作為陰極刀具,並以P型單晶之矽基板作為陽極工件做電化學加工,電解液部分嘗試了四種不同之電解液,分別為氟化銨、氫氟酸、氟化銨添加鹽酸、氟化銨添加硫酸四種,並探討其不同電解液下對加工孔徑與深度的影響,再搭配其餘加工參數,找出相對較佳之孔徑。
  實驗結果顯示,氟化銨與氟化銨添加鹽酸兩種電解液下加工矽基板,其加工情形不佳,而在氟化銨添加硫酸作為電解液加工出來孔徑則比傳統使用氫氟酸作為電解液表現較好。最後以最佳參數進行加工,可得到孔徑為108.7μm。

In numerous non-traditional machinings, the electrochemical machining (ECM) has the advantage of quick processing speed, good convergence in surface stress, and nice smoothness on the workpiece surface with enormous potentialities and highly added value.
  Single-crystal p-Si is machined by ECM. Tungsten carbide cylinders with diameter of 50 and 100 micro-meter are selected as the electrode tools. In this research, four kinds of solution, namely ammonium fluoride, hydrofluoric acid, ammonium fluoride added with hydrogen chloride and ammonium fluoride added with sulfuric acid are used as electrolytes. The effects of machining diameter and depth by different electrolytes, and other machining parameters are investigated to identify a relatively better diameter.
  From experimental results, it shows that the machining performance is poor when machined with ammonium fluoride and ammonium fluoride added with hydrogen chloride on p-type silicon plates. And the machining diameter in ammonium fluoride added with sulfuric acid is better then that in hydrofluoric acid. Finally, under the best parameter of machining, the diameter reaches only 108.7μm.

摘要 I
Abstract II
致謝 III
目錄 IV
表目錄 VIII
圖目錄 IX
符號說明 XI
第一章 緒論 1
1-1前言 1
1-2 非傳統加工簡介 2
1-2-1 放電加工(Electro Discharge Machining, EDM) 3
1-2-2 電子束加工(Electron beam machining, EBM)[6] 4
1-2-3 雷射束加工(Laser beam machining, LBM)[6] 4
1-2-4 超音波加工(Ultrasonic machining, USM)[6] 5
1-3 矽加工簡介 6
1-4 文獻回顧 8
1-4-1 電化學加工 8
1-4-2 微電化學加工 10
1-4-3 電化學矽加工 11
1-5 研究動機 12
第二章 理論基礎 14
2-1 電化學加工之基本理論 14
2-1-1 電流效率(Current Efficiency) 15
2-1-2 液相質傳動力學 15
2-1-3 電雙層理論 17
2-2 電化學反應式[20] 18
2-3 導電度、導電度與濃度的關係、電流密度 20
2-3-1 導電度(Conductivity) 20
2-3-2 導電度與濃度的關係 22
2-3-3 電流密度 23
第三章 實驗設備方法與步驟 24
3-1 實驗設備 24
3-1-1 機台結構設計 24
3-1-2 刀具進給控制系統 25
3-1-3 脈衝電源供應系統 25
3-1-4 數位三用電錶 26
3-1-5 金相顯微鏡 26
3-1-6 排煙櫃 26
3-2 實驗材料 27
3-2-1 陰極刀具 27
3-2-2 陽極工件 27
3-2-3 陽極導引片 28
3-2-4 電解液 28
3-2-5 電解槽 28
3-3 實驗步驟與注意事項 29
第四章 結果與討論 31
4-1 使用氟化銨電解液下之加工情形 32
4-1-1 加工電壓之影響性 32
4-1-2 刀具轉速之影響性 33
4-1-3 刀具進給速度之影響性 34
4-1-4 加工頻率之影響性 35
4-1-5 電解液濃度之影響性 35
4-2 使用其他不同電解液之加工結果 37
4-2-1 使用氫氟酸電解液 37
4-2-2 使用氟化銨添加鹽酸電解液 38
4-2-3 使用氟化銨添加硫酸電解液 39
4-3 不同電解液時加工結果之比較 40
4-3-1 固定導電度時加工結果之比較 41
4-3-2 相同化學式比例時,加工結果之比較 42
第五章 結論與未來展望 44
5-1 結論 44
5-2 未來展望 45
參考文獻 46

[1] S. H. Ahn, S. H. Ryu, D. K. Choi and C. N. Chua, “Electro-chemical Micro Drilling Using Ultra Short Pulses,” Precision Engineering. Vol.28, pp. 129-34 (2004).
[2] 丁純乾,添加界面活性劑對放電加工特性的影響,國立中央大學機械工程研究所碩士論文 (2004).
[3] W. Ehrfeld, H. Lehr, F. Michel and A. Wolf, “Microelectro Discharge Machining as a Technology in Micromachining,” Proceedings of SPIE, Vol. 2879, pp.332-337 (1996).
[4] O.T. Guenat, T. Hirata, T. Akashi, M. A. Gretillat and N. F. de Rooij,
“A Pneumatic Air Table Realized by Micro-EDM,” Journal of
Microelectromechanical Systems, Vol. 7, pp. 380-385 (1998).
[5] K. Takahata and Y. B. Gianchandani, “Batch Mode Micro - electro -
discharge Machining,” Journal of Microelectromechanical Systems,
Vol. 11, pp.102-110 (2002).
[6] 簡文通編著,機械製造,全華圖書股份有限公司 (2011).
[7] http://cn.chinatungsten.com/big5/Si/guidewulixingzhi.html
[8] D. Zhu and H. Y. Xu, “Improvement of Electrochemical Machining
Accuracy by Using Dual Pole Tool,” Journal of Materials Processing
Technology, Vol. 129, pp. 15-18 (2002).
[9] H. Hocheng, Y. H. Sun, S. C. Lin and P. S. Kao, “A Material Removal Analysis of Electrochemical Machining Using Flat-end Cathode,” Journal of Material Processing Technology, Vol. 140, pp. 264-268 (2003).
[10] M. S. Hewidy, “Controlling of Metal Removal Thickness in ECM Process,” Journal of Materials Processing Technology, Vol. 160, pp. 348-353 (2005).
[11] A.N. Zaytsev, V.P. Zhitnikov and T.V. Kosarev, “Formation mechanism and Elimination of the Workpiece Surface Macro-defects, Aligned along the Electrolyte Stream at Electrochemical Machining,” Journal of Materials Processing Technology, Vol. 149, pp. 439-444 (2004).
[12] J. Kozak, K. P. Rajurkar and Y. Makkar, “Selected Problems of
Micro-electrochemical Machining,” Journal of Materials Processing
Technology, Vol. 149, pp. 426-431 (2004).
[13] J. C. S. Neto, E. M. Silva, and M. B. Silva, “Intervening Variables in
Electrochemical Machining,” Journal of Materials Processing
Technology, Vol. 179, pp. 92-96 (2006).
[14] T. Kurita and M. Hattori, “A Study of EDM and ECM/ECM-lapping
Complex Machining Technology,” International Journal of Machine
Tool and Manufacture, Vol. 46, pp. 1804-1810 (2006).
[15] B. Bhattacharyya, B. Doloi and P. S. Sridhar, “Electrochemical Micro-machining: New Possibilities for Micro-manufacturing,” Journal of Materials Processing Technology, Vol. 113, pp. 301-305 (2001).
[16] V. Kirchner, X. Xia and R. Schuster, “Electrochemical Nano-structuring with Ultra-short Voltage Pulses,” Acc. Chem. Res., Vol. 34, pp. 371-377 (2001).
[17] H. Suzuki, “Microfabrication of Chemical Sensors and Biosensors for Environmental Monitoring,” Materials Science and Engineering C, Vol. 12, pp. 55-61 (2000).
[18] Y. Li, Y. Zheng, G. Yang and L. Q. Peng, “Localized Electrochemical Micromachining with Gap Control,” Sensors and Actuators, A 108, pp.144-148 (2003).
[19] S. H. Ahn, S. H. Ryu, D. K. Choi and C. N. Chu, “Electro-chemical Micro Drilling using Ultra Short Pulses,” Precision Engineering, Vol. 28, pp. 129-134 (2004).
[20] B. Bhattacharyya , “M. Malapati and J. Munda, Advancement in Electrochemical Micro-machining,” Journal of Materials Processing Technology, Vol. 169, pp. 485-492 (2005).
[21] X. G. Zhang, S. D. Collins, and R. L. Smith, “Prous Silicon Formation and Electropolishing of Silicon by Anodic Polarization in HF Solution, ” J. Electrochem. Soc., Vol. 136, No.5, pp.1561-1565 (1989).
[22] W. Lang, “Silicon microstructuring technology,” Mater. Sci. Eng., R17, pp.1-55, (1996).
[23] M. Shikida, K. Nanbara, and T. Koizumi, “A Model Explaining Mask-corner Undercut Phenomena in Anisotropic Silicon Etching: A Saddle Point in the Etching-rate Diagram, ” Sensors and Actuators, A 97-98, pp.758-763 (2002).
[24] P. Allongue, P. Jiang, V. Kirchner, A. L. Trimmer and R. Schuster,“Electrochemical Micromachining of p-Type Silicon,” Journal of Physical Chemistry B, Vol. 108, pp. 14434-14439 (2004).
[25] M. Bassu, L. M. Strambini, and G.Barillaro, “Advance in Electrochemical Micromachining of Silicon: Towards MEMS Fabrication, ” Procedia Engineering, Vol. 25, pp.1653-1656, (2011)
[26] 黃惠良等人著,太陽電池,五南圖書出版股份有限公司 (2008).
[27] 田福助著,電化學基本原理與應用,五洲出版社 (2004).
[28] J.F. Thorpe and R.D. Zerkle, Theoretical Analysis of the Equilibrium
Sinking of Shallow, Axially Symmetric, Cavities by Electrochemical
Machining, Electrochemical Society Princeton pp.1-39(1971).
[29] 張振昌,化學水浴沉積法成長硫化鎘薄膜之研究,國立中山大學材料科學研究所碩士班論文(2006).
[30] 林正宜,電化學放電加工於石英玻璃加工精度改善之研究,國立中央大學機械研究所碩士班論文(2012).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔