(18.204.2.190) 您好!臺灣時間:2021/04/19 07:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許景翔
研究生(外文):Xu, Jing-Xiang
論文名稱:利用電子束微影製作高密度石英柱狀結構
論文名稱(外文):Fabrication of high density quartz pillars by electron beam lithography
指導教授:洪銘聰洪銘聰引用關係
指導教授(外文):Hung, Ming-Tsung
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:114
中文關鍵詞:電子束微影濕蝕刻石英非等向性蝕刻柱狀奈米結構
外文關鍵詞:electron beam lithographywet etchinganisotropic etching of quartznanopillars
相關次數:
  • 被引用被引用:2
  • 點閱點閱:228
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
石英具有良好的壓電及熱穩定性,在各種電子元件上有廣泛的應用。例如:濾波器、石英晶體微天平及振盪器等。將奈米柱狀結構製作在石英元件上,可以利用表面積大的特性,增加感測面積、提高感測器靈敏度。如:表面聲波元件、化學物質感測器,或利用其表面特性的改變,製作有抗污、自潔特性的元件。
本文利用電子束微影(Electron Beam Lithography,EBL)製作奈米柱狀結構,光學微影系統由於波長的關係,更小的解析度難以實現;電子束微影利用電子束作為曝光源,所以波長比一般傳統光學微影系統更小,可以實現更小的線寬。由於石英為絕緣基板,必須先在表面覆蓋一層導電性材料,防止電荷累積。本研究將鉻金屬薄膜沉積在石英基板,再利用電子束微影將聚甲基丙烯酸甲酯(Polymethyl methacrylate,PMMA)光阻刻寫圖形,最後利用濕蝕刻方式蝕刻出奈米柱狀結構。
本文探討利用電子束微影及非等向性蝕刻製作石英柱狀奈米結構之限制與考量,利用結構外形及遮罩寬度去分析討論高密度柱狀結構的關係和限制。結果發現在微小尺寸下,光阻厚度、蝕刻遮罩厚度及底切現象限制了柱狀結構的長度與密度,不同的遮罩圖形寬度、間距與結構排列方式,對外形輪廓沒有太大影響。而圓形遮罩在遮罩尺寸損失與結構完整度都比方形遮罩來的差。預測蝕刻外形與實驗數據比較,雖然有所誤差,但是蝕刻趨勢及外形輪廓一致。設計規則排列圖形進行非等向性蝕刻,提供蝕刻及遮罩限制資訊,對未來奈米遮罩石英濕蝕刻實驗設計有所幫助。


Quartz has good piezoelectricity and thermal stability. It has been widely used in electronics-industry, such as wave filters, microbalances, and oscillators. The nanopillars on quartz devices, may increase their performance due to the large surface area or produced a self-cleaning surface. The nanopillar structure was fabricated by electron beam lithography (EBL) to produce nanoscale patterns. A chromium thin film was evaporated on quartz surface to avoid the electric charge accumulation. The patterns were written on the resist (Polymethyl methacrylate PMMA). The nanopillars were finally fabricated by wet etching.
The limitation and fabrication isuues was evaluated in this research. It was found that the thickness of the resist and the maskant layer are important in fabricating nanoscale patterns. The mask width and its associated undercut are especially critical to have succesful results in quartz anisotropic etching. The relationship and limit of the fabricated pillar geometry and density were also analyzed. It was founded no considerable effects on the pillar length for different pattern widths, spacings, and arrangements. For the structure integrity, the circle patterns are worse than the square patterns. The predicted etching profile was performed from ealier experiments of larger structures, and is found to agree with this present work. The study is helpful in nanosize quartz wet etching in the future.

摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 XIV
第一章 緒論 1
1-1 研究背景 1
1-2文獻回顧 2
1-3研究動機與目的 6
1-4論文架構 7
第二章 理論基礎 8
2-1 石英晶體結構與特性 8
2-2石英切割角度 9
2-3電子束曝光系統 10
電子束微影對圖形影響常見問題 12
2-4蝕刻製程方式 14
石英濕蝕刻 15
第三章 研究方法 19
3-1研究架構 19
3-2實驗步驟 20
3-2-1試片清洗 21
3-2-2沉積金屬薄膜 21
3-2-3設計遮罩圖形 22
3-2-3黃光微影製程 23
3-2-4金屬薄膜蝕刻 24
3-2-5蝕刻液調配 24
3-2-6石英蝕刻 24
3-2-7試片觀察與分析 25
第四章 結果與討論 26
4-1曝光差異 26
4-1-1曝光Dose劑量不同 26
4-1-2曝光單位面積下的格點數量提升 34
4-1-3電子束直寫區域重疊的影響 37
4-1-4曝光劑量對之後的蝕刻影響 39
4-2圖形設計部分 42
4-2-1相同間距寬度 43
4-2-2遮罩圖形不同 55
4-2-3相同週期(結構中心到另一結構中心)距離 67
4-2-4遮罩圖形排列方式差異 76
4-3預測結果與實驗數據比較分析和蝕刻時間之影響 85
4-3-1預測結果與實驗數據比較分析 85
4-3-2石英蝕刻時間 87
第五章 結論與未來工作 91
參考文獻 92


[1] J. Curie, and P. Curie, "Development by pressure of polar electricity in hemihedral crystals with inclined faces," Bull. Soc. Min. de France, vol. 3, pp. 903, 1880.
[2] V.E. Bottom, "Piezoelectric effect and applications in electrical communication," in Proc. IRE,, vol. 50, pp. 929-931, 1962.
[3] J. Boyd, "Epson Toyocom的QMEMS元件將石英晶體帶進21世紀"Seiko Epson Corp,2007.
[4] M. Spaeth, W. Barthlott, "Lotus-Effect®: Biomimetic Super-Hydrophobic Surfaces and their Application, "Manuel Spaeth et al., Advances in Science and Technology, 60, 38, 2008.
[5] A.K. Geim, S.V. Dubonos, I.V. Grigorieva, K.S. Novoselov, A.A. Zhukov, S.Y. Shupoval, "Microfabricated adhesive mimicking gecko foot-hair," Nature Mater. 2, 461-463, 2003.
[6] Y. Cui, Q. Wei, H. Park and C.M. Lieber, "Nanowire Nanosensors for Highly-Sensitive, Selective and Integrated Detection of Biological and Chemical Species" Science 293, 1289-1292,2001.
[7] 湯喻翔、黃茂榕、楊啟榮、蕭銘華,"矽奈米陣列結構製作與其燃料電池電極之應用", 科儀新知第三十二卷第一,2010.

[8] T.M. Blattler, A. Binkert, M. Zimmermann1, M. Textor1, J. Voros and E. Reimhult "From particle self-assembly to functionalized sub-micron protein patterns," Nanotechnology 19, pp10.075301 ,2008.
[9] P.R. Krauss, P.J. Renstrom, S.Y. Chou,"Fabrication of nanodevices using sub-25 nm imprintlithography,"DeviceResearchConference,Digest.54thAnnual,pp.194-195,1996.
[10] Y. Morikawa, T. Koidesawa, T. Hayashi, and K. Suu,"A novel deep etching technology for Si and quartz materials," Thin Solid Films, vol. 515, pp. 4918-4922, 2007.
[11] N. Kaji, Y. Tezuka, Y. Takamura, M. Ueda, T. Nishimoto,H. Nakanishi,Y. Horiike, and Y. Baba ,"Separation of Long DNA Molecules by Quartz Nanopillar Chips under a Direct Current Electric Field," Analytical Chemistry, Vol. 76, pp.15-22, January 1, 2004.
[12] A.E. Zumsteg, P. Suda, and W. Zingg, "Anisotropy of etching rate for quartz in ammonium bifluoride," in Proc. IEEE Int. Freq. Contr. Symp.pp. 359–363, 1979.
[13] C. Hedlund, U. Lindberg, U. Bucht and J. Soderkvist "Anisotropic etching of Z-cut quartz " Journal of Micromechanics and Microengineering, vol. 3, pp. 65-73, 1993.
[14] P. Rangsteny,C. Hedlund,I.V. Katardjiev and Y. Bäcklund "Etch rates of crystallographic planes in Z -cut quartz—experiments and simulation.," Journal of Micromechanics and Microengineering, vol. 8, pp. 1-6, 1998.

[15] D. Cheng, K. Sato, M. Shikida, A. Ono, K. Sato, K. Asaumi and, Y. Iriye.“Development of Quartz Etching Database and 3-D Micromaching Simulation System”,INTERNATlONAL SYMPOSIUM ON MICROMECHATRONICS AND HUMAN SCIENCE,IEEE,pp.281-285,2003.
[16] S. Kal and S. Das, " Development of silicon and quartz based MEMS high precision accelerometers,"Indian Journal of Pure & Applied Physics Vol.45, pp.299-303 April ,2007.
[17]J.S. Danel and G. Delapierre, "Quartz: a material for microdevices," Journal of Micromechanics and Microengineering, vol. 1, pp. 187-198, 1991.
[18]林佳珈, "穿膜胜肽與生物細胞膜間的交互作用之探討(Ι)-膽固醇的含量對蜂毒胜肽穿膜機制之影響," 2004.
[19] H. Chang, "石英元件技術系列(1)石英元件的過去、現在與未來,台灣區電機電子工業同業公會電子報," vol. 93, 2009.
[20] 龍文安, "半導體微影技術," 五南圖書出版公司, 2004.
[21]陳俊宏, "雷射輔助壓印技術機制探討",成功大學微機電系統工程研究所碩士論文,2005
[22] 邱燦賓、施敏,"電子束微影技術",科學發展月刊,第28卷第6期,2000。
[23]洪永隆, "修飾阻劑及導電高分子在電子束微影製程之應用",中央大學化學工程
研究所碩士論文,2000
[24]羅吉宗, "薄膜科技與應用", 全華科技圖書公司, 2005.

[25] H. Kikyuama, N. Miki, K. Saka, J. Takano, I. Kawanabe, M. Miyashita, and T. Ohmi, "Principles of Wet Chemical-Processing in Ulsi Microfabrication," Ieee Transactions on Semiconductor Manufacturing, vol. 4, pp. 26-35, 1991.
[26] J.S. Judge, "A Study of the Dissolution of SiO_2 in Acidic Fluoride Solutions," J Electrochem. Soc, vol. 118, pp. 1772-1775, 1971.
[27] J. K. Vondeling, "Fluoride-based etchants for quartz " Journal of Materials Science, vol. 18, pp. 304-314, 1983.
[28] R.J. Jaccodine. “Use of Modified Free Energy Theorems to Predict Equilibrium Growing and Etching Shapes”,Bell Telephone Laboratories,Inc. Allentown,Pennsylvania. pp.2643-2647
[29] R.W. Ward, "Update on semiconductor process techniques for crystals," Proc. 4th Quartz Crystal Conf, pp. 276–287, 1982
[30] V.V. Aristov, A.I. Erko, B.N. Gaifullin, A.A. Svintsov, S.I. Zaitsev, H.F.Raith, R.R. Jede “Proxy - a new approach for proximity correction in electron beam lithography”, Microcircuit Eng. 17, 413 ,1992.
[31]黃志偉, "石英柱狀微結構濕蝕刻製程之研究",中央機械工程研究所碩士論文,2011

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔