(3.238.174.50) 您好!臺灣時間:2021/04/17 05:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:薩福安
研究生(外文):Mohamed Safuan Bin Md Salikon
論文名稱(外文):The relationship between social media addiction and purchasing intention of ubiquitous system devices-its predicting roles and mediating roles
指導教授:鄭明松鄭明松引用關係
指導教授(外文):Julian Ming-Sung Cheng
學位類別:碩士
校院名稱:國立中央大學
系所名稱:英語商業管理碩士學位學程
學門:商業及管理學門
學類:一般商業學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:70
中文關鍵詞:智慧型裝置自我調節理論抑鬱焦慮社群媒體台灣
外文關鍵詞:ubiquitous system devicesself-regulation theorydepressionanxietysocial MediasTaiwan
相關次數:
  • 被引用被引用:0
  • 點閱點閱:248
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
隨處可見的智慧型裝置儼然成為通訊行業的最新趨勢,然而,為了瞭解消費者購買意願,以及所謂社群媒體的普及,在這競爭尤為激烈的通訊行業市場內,研究社群媒體與消費者購買意願間的關係,顯得越發重要。本研究旨於探討內在與外在因素,對於個人對於社群媒體的沉迷。本研究的概念模型是以281名消費者的調查樣本為基礎所產生的結果,調查對象以大台北地區為主要目標群,首先,以內在因素對於社群媒體的成癮性出發,透過自我調解理論來檢視消費者對於智慧型裝置的購買意願。具體地指出肯定性的使用經驗、正面的情緒、抑鬱症、焦慮以及其他控制變相的影響等。其次,再以外在的角度探討,如感知能力和整體安裝基礎,並以提出的模型為理論支持,透過最小平方路徑分析法(PLS)來分析問卷數據。結果顯示,社群媒體的成癮程度對於消費者的購買意願有顯著性的影響。
The ubiquitous system devices industry has created a new trend in communication. However, in current highly competitive markets, in order to learn more about the current consumer purchasing intention environment in Taiwan's ubiquitous system devices markets, also as more and more social Medias become available to the public. It is very important to research the relationship of social Medias and the consumer’s purchasing intention. This research aims to investigate the internal and external predictor which would cause an individual to get addicted to social Medias. A conceptual model has been developed based on a survey sample of 281 consumers. The survey results were obtained in the capital of Taiwan city of Taipei, Taiwan. First, we discuss about the internal effect of social Media’s addiction through the implication of self-regulation theory in the purchasing intention of ubiquitous system devices. More specifically, the influence of positive experience, positive emotionality, depression, anxiety and other control variables are examined. Then, we explores from the external perspective such as perceived capability and overall installed base. Partial least squares (PLS) are employed to analyze the survey data and it provides reasonable support for the validity of the proposed model.The results show that social media’s addiction significantly affects the purchasing intention of ubiquitous system devices.
Table of Contents
1.Introduction.............................................12. Literature review, Proposed Model, HypothesisDevelopment5
2.1 self-regulation theory.................................5
2.2 Hypothesis Development.................................6
2.2.1 Positive experience and social media addiction………....6
2.2.2 Perceived compatibility and Social Medias Addiction..7
2.2.3 Overall installed base, and Social Medias Addiction.…9
2.2.4 Social Medias Addiction and Anxiety………………...........10
2.2.5 Social Medias Addiction and Depression..............11
2.2.6 Anxiety and depression…………………………………………………………........12
2.2.7 Depression and Intention to Purchase ubiquitous system device……………….13
2.2.8 Control variables: Perceived ease of use, Judgment of product quality, and Trust………………………………………………………………………….…..15
3. Research Methodology...................................17
3.1 Scale operationalization….............................17
3.2 Data collection………………………………………………………………...............20
4: Data Analysis……………………………………………………………………...……...........22
4.1 Sample characteristics……………………………………………………………………......23
4.2 Data accuracy analysis……………………………………………………………………......24
4.3 Common method bias……………………………………………………………………….........27
4.4 Hypothesis testing: Direct hypothesis effects…………………..28
4.5 Hypothesis testing: Moderating effects of complementary goods availability………..29
5: Conclusion and implication …..………………………………………….........31
6: Limitation and Future Research.…………………………………………….......32
References................................................33
Appendix…………………………………………………………………………......................44
List of Tables
Figure 1: Research model………………………………………………..….............16
Figure 2: structural model results....…………………………………………....30
Table 1: Sample Demographic Characteristics…….…………….………….…23
Table 2: Measurement accuracy….…………………….…………………….........…24
Table 3: Proposed direct effect results……………………………………...……29
Table 4: Proposed moderating effect results………...………………………30

References
1. Ackoff, R.L., Emery, F.E., and Ruben, B.D. (2005), “On purposeful systems: An interdisciplinary analysis of individual and social behavior as a system of purposeful events”, Aldine-Atherton, Chicago.
2. Angres, D.H. and Angres, K.B. (2008), “The disease of addiction: Origins, treatment, and recovery”, Disease-a-Month, 54(10), pp.696-721.
3. Ansell, E.B., Kurtz, J.E. and Markey, P.M. (2008), “Gender differences in interpersonal complementarity within roommate dyads”, Psychological bulletin, 34(4), pp.502-512.
4. Barker, V. 2009, “Older adolescents’ motivations for social network site use: The influence of gender, group identity, and collective self-esteem”, Cyber Psychological Behavior, 12(2), pp.209–213.
5. Barlow. D.H. (2000), “Unraveling the mysteries of anxiety and its disorders from the perspective of emotion theory”, American Psychologist, 55(11), pp. 1247–1263.
6. Baumeister, R.F. and Vohs, K.D. (2007), “Self-regulation, ego depletion, and motivation”, Social and Personality Psychology Compass, 1(10), pp.1-14.
7. Biswas, A. and Blair, E.A. (1991), “Contextual effects of reference prices in retail advertisements”, Journal of Marketing, 55(3), pp.1-12.
8. Bhaskaran, S.R. and Gilbert, S.M. (2005), “Selling and leasing strategies for durable goods with complementary products”, Management Science, 51(8), pp.1278–1290.
9. Bhattacherjee, A. (2002), “Individual trust in online firms: Scale development and initial test”, Journal of Management Information Systems, 19(1), pp.211-241.
10. Bouras, N. and Holt, G. (2007). Psychiatric and Behavioural Disorders in Intellectual and Developmental Disabilities (2nd ed.), Cambridge University Press, United Kingdom.
11. Brady, E.U. and Kendall, P.C. (1992), “Comorbidity of anxiety and depression in children and adolescents”, Psychological Bulletin, 111(2), pp. 244–255
12. Carver, C.S. and Scheier, M.F. (1982), “Control theory: A useful conceptual framework for personality-social, clinical, and health psychology”, Psychological Bulletin, 92(1), pp.111-135.
13. Charlton, J.P. and Danforth, I.D.W. (2007), “Distinguishing addiction and high engagement in the context of online game playing”, Computers In Human Behavior, 23(3), pp.1531–1548
14. Cheung, C.M.K., Chiu, P.Y. and Lee, M.K.O. 2010, “Online social networks: Why do students use facebook?”, Computer In Human Behavior, 27(3), pp.1337–1343
15. Cheong, J.H. and Park, M. (2005), “Mobile internet acceptance in Korea”, Internet Research, 15(2), pp.125-140.
16. Childress, A.R, Ehrman, R., McLellan, A.T., MacRae, J., Natale, M., and O'Brien, C.P. (1994), “Can induced moods trigger drug-related responses in opiate abuse patients?”, Journal of Substance Abuse Treatment, 11(1), pp.17-23.
17. Davis, F.D. (1989), “Perceived usefulness, perceived ease of use, and user acceptance of information technology”, Management Information Systems Quarterly, 13(3), pp.319-340.
18. Davis, F., Bagozzi, R. and Warshaw, P. (1989), “User acceptance of computer technology: A comparison of two theoretical models”, Management Science, 35(8), pp.982-1003.
19. Diener, E., Wirtz, D., Tov, W., Kim-Prieto, C., Choi. D., Oishi, S. and Biswas-Diener, R. (2009), “New measures of well-being: Flourishing and positive and negative feelings”, Social Indicators Research, 39(2), pp.247-266.
20. Dormann, C. and Zapf, D. (2002), “Social stressors at work, irritation, and depressive symptoms: Accounting for unmeasured third variables in a multi-wave study”, Journal of Occupational and Organizational, 75(3), pp. 33-58.
21. Dryer, D.C. and Horowitz, L.M. (1997), “When do opposite attract iterpersonal complementarity versus similarity”, Journal of Personality and Social Psychology, 72(3), pp.592-03.
22. Duhachek, A. (2005), “Coping: A multidimensional, hierarchical framework of responses to stressful consumption episodes”, Journal of Consumer Research, 32(2), pp. 41–53.
23. Fam, K.S., Foscht, T. and Collins, R.D. (2004), “Trust and the online relationships – An exploratory study from New Zealand”, Tourism Management, 25(2), pp.195-207.
24. Fishbein, M. and Ajzen, I. (1975), “Belief, attitude, intention and behavior: An introduction to theory and research reading”, Addison Wesley, Massachusetts.
25. Gandal, N., Kende, M. and Rob, R. (2000), “The dynamics of technological adoption in hardware/software systems: The case of compact disc players”, RAND Journal of Economics, 31(1), pp.43-61.
26. Garcia, A. and Herrbach, O. (2010), “Organizational commitment, role tension and affective states in audit firms”, Managerial Auditing Journal, 25(3), pp.226-239.
27. Gardner, M.P. and Rook, D.W. (1988) “Effect of impulse purchase on consumers’ affective states”, Advance in Consumer Research, 15(1), pp. 127-130.
28. Gefen, D. and Straub, D.W. (2004), “Consumer trust in B2C e-commerce and the importance of social presence: Experiments in e-products and e-services”, Omega, 32(6), pp.407-424.
29. Griffiths, M. (1998), “Internet addiction: does it really exist”, in Gackenbach, J. (Ed.), Psychology and the Internet: Intrapersonal, Interpersonal, and Transpersonal Implications, Academic Press, New York, NY.
30. Grewal, R., Comer, J.M. and Mehta, R. (2001), “An investigation into the antecedents of organizational participation in business-to-business electronic markets”, Journal of Marketing, 65(3), pp.17-33.
31. Heijden, H. (2004), “User acceptance of hedonic information systems”, Management Information Systems Quarterly, 28(4), pp.695-704.
32. Hoffman, D.L., Novak, T.P. and Peralta, M. (1999), “Building consumer trust online”, Communications of the ACM, 42(4), pp.80-95.
33. Homburg, C. and Annette, G. (2001). “Personal characteristics as moderators of the relationship between customer satisfaction and loyalty- An empirical analysis”. Psychology and Marketing, 18(1), pp. 43-66.
34. Howard, Alan D. (1994), “A detachment-limited model of drainage basin evolution”, Water Resources Research, 30(7), pp.2261-2286.
35. Howard, J. A. (1989), “Customer Behavior in Marketing Strategy”, Prentice Hall International, Inc., Englewood Cliffs, New Jersey.
36. Howard, J. A., Shay, R. P. and Green, C. A. (1988). “Measuring the effect of marketing information on buying intentions”, Journal of Service Marketing, 2(4), pp. 27-36.
37. Hustad, J.T.P., Carey, K.B., Carey, M.P. and Maisto, S.A. (2009), “Self-regulation, alcohol consumption, and consequences in college student heavy drinkers: A simultaneous latent growth analysis”, Journal of Studies on Alcohol and Drug, 70(3), pp.373-382.
38. Huang, C. (2010), “Internet use and psychological well-being: A meta-analysis”, Cyber psychology, Behavior, and Social Networking, 13(3), pp.241-249.
39. Hsu, S.H., Wen, M.H. and Wu, M.C. (2009), “Exploring user experiences as predictors of MMORPG addiction”, Computers & Education, 53(3), pp.990-999.
40. Hwang, Y. and Kim, D.J. (2007), “Customer self-service systems: The effects of perceived web quality with service contents on enjoyment, anxiety, and e-trust”, Decision Support Systems, 43(3), pp.746-760.
41. Irwin, July R., and Gary H. McClelland, (2003) “Negative consequences of dichotomizing continuous predictor variables,” Journal of Marketing Research, 40(3), 366–71.
42. Kang, I., Shin, M.M. and Park, C. (2011), “Internet addiction as a manageable resource: A focus on social network services”, Online Information Review, 37(1), pp.28-41.
43. Kaplan, A.M. (2012), “If you love something, let it go mobile: Mobile marketing and mobile social media 4x4”, Business Horizons, 55(2), pp.129-139.
44. Katz, M.L. and Shapiro, C. (1985), “Network externalities, competition, and compatibility”, The American Economic Review, 75(3), pp.424-440.
45. Klein, J.G. (2002), “Us versus them, or us versus everyone? Delineating consumer aversion to foreign goods”, Journal of International Business Studies, 33(2), pp.345-363.
46. Klein, J.G., Ettenson, R. and Morris, M.D. (1998), “The animosity model of foreign product purchase: An empirical test in the People’s Republic of China”, Journal of Marketing, 62(1), pp.89-100.
47. Kraut, R., Patterson, M., Lundmark, V., Kiesler, S., Mukopadhyay, T. and Scherlis, W. (1998), “Internet paradox: A social technology that reduces social involvement and psychological well-being?”, The American Psychologist, 53(9), pp.1017-1031.
48. Kuss, D.J. and Griffiths, M.D. (2011), “Online Social Networking and Addiction—A Review of the Psychological Literature”, international journal of environmental research and public health, 8(9), pp.3528–3552.
49. Kwon, M., Lee, J.Y., Won, W.Y., Park, J.W., Min, J.A., Hahn, C., Gu, X., Choi, J.H. and Kim, D.J. (2013), “Development and validation of a smartphone addiction scale (SAS)”, Plos One, 8(2), pp.1-7.
50. Laroche, M., Bergeron, J. and Barbaro-Forleo, G. (2001), “Targeting consumers who are willing to pay more for environmentally friendly products”, Journal of Consumer Marketing, 18(6), pp.503-520.
51. Lin, C.P. and Bhattacherjee, A. (2008), “Elucidating individual intention to use interactive information technologies: the role of network externalities”, International Journal of Electronic Commerce, 13(1), pp.85–108.
52. Lin, C.P., Tsai, Y.H., Wang, Y.J. and Chiu, C.K. (2011), “Modeling IT relationship quality and its determinants: A potential perspective of network externalities in e-service”, Technological Forecasting & Social Change, 78(1) , pp.171-184
53. Lippmann, S., Mazour, I. and Shahab, H. (2001), “Insomnia: therapeutic approach”, South Medical Journal, 94(4), pp. 866–873.
54. Mangold, W.G. and Faulds, D.J. (2009), “Social media: The new hybrid element of the promotion mix”, Business Horizons, 52(4), pp.357-365.
55. Mao, E., Srite, M., Thatcher, J.B. and Yaprak, O. (2005), “A research model for mobile phone service behaviors: Empirical validation in the US and Turkey”, Journal of Global Information Technology Management, 8(4), pp.7-27.
56. Marlatt, G.A., Baer, J.S., Donovan, D.M. and Kivlahan, D.R. (1988), “Addictive behaviors: Etiology and treatment”, Annual Review of Psychology, 39, pp.223-252.
57. Mohr, G. (1991), “Five sub-constructs of psychological complaints of workers: Selection and development”, In Greif, S., Bamberg, E. and Semmer, N., Psychischer Stress am Arbeitsplatz. Gottingen, Germany: Hogrefe, pp. 91-119
58. Moore, G.C. and Benbasat, I. (1991), “Development of an instrument to measure the perceptions of adopting and information technology innovation”, Information Systems Research, 2(3), pp.192-222.
59. Morwitz, V. G. and D. Schmittlein. (1992), “Using Segmentation to Improve Sales Forecasts Based on Purchase Intent: Which 'intenders' actually buy”, Journal of Marketing Research, 29(4), pp. 391-405.
60. Muruganantham, G. and Bhakat, R. S.(2013) , “A review of impulse buying behavior”, International Journal of Marketing Studies, 5(3), pp.149-160.
61. Nijssen, E.J. and Douglas, S.P. (2004), “Examining the animosity model in a country with a high level of foreign trade”, International Journal of Research in Marketing, 21(1), pp.23-38.
62. O¨mer Faruk S¸ ims¸ek (2011), “An intentional model of emotional well-being: The development and initial validation of a measure of subjective well-being”, Journal of Happiness Study, 12(3), pp.421-442
63. Podsakoff, P.M., MacKenzie, S.B., Lee, J.Y. and Podsakoff, N.P. (2003), “Common Method Biases in behavioral research: A critical review of the literature and recommended remedies”, Journal of Applied Psychology, 88(5), 879–903.
64. Radner, R. and Rothschild, M. (1975), “On the Alloca-tion of Effort”, Journal of Economic Theory (10), pp.358-376.
65. Reichheld, F.F. and Schefter, P. (2000), “E-loyalty: Your secret weapon on the web”, Harvard Business Review, 78(4), pp.105-13.
66. Riemann, D. and Vodeholzer, U. (2003), “Primary insomnia: A risk factor to develop depression?”, Journal of Affective Disorder, 76(1-3), pp. 255–259.
67. Ringle, C. M., Wende, S. and Will, A. (2005), “SmartPLS 2.0 (beta),” [available athttp://www.smartpls.de].
68. Salmans, S. (1997), “Depression: Questions You Have – Answers You Need”, People's Medical Society, Allentown, Pennsylvania.
69. Schiffman, S., Paty, J. A., Gnys, M., Kassel, J. A. and Hickcox, M. (1996), “First lapses to smoking: Within-participants analysis of real-time reports”, Journal of Consulting & Clinical Psychology, 64(4), pp. 366–379.
70. Schilling, M.A. (2002), “Technology success and failure in winner-take-all markets: The impact of learning orientation, timing, and network externalities”, The Academy of Management Journal, 45(2), pp.387-398.
71. Schmeichel, B. J. and Baumesiter, R. F. (2004), “Self-regulatory strength”, In Baumeister, R.F. and Vohs, K.D., Handbook of Self-regulation: Research, Theory, and Applications, Guilford Press, New York, NY, USA, pp.115-130.
72. Shah, J. Y. and Kruglanski, A.W. (2000), “Aspects of goal networks: Implications for self-regulation”, In Boekaerts, M., Pintrich, P. R. and Zeidner, M., Handbook of Self-Regulation, Academic Press, San Diego, California, pp.86-108.
73. Sneath, J. Z., Lacey, R. & Kennett-Hensel, P. A. (2009). “Coping with a natural disaster: Losses, emotions, and impulsive and compulsive buying”, Marketing Letters, 20(1), pp. 45-60.
74. Stark, K.D. and Laurent, J. (2001), “Joint factor analysis of the children’s depression inventory and the revised children’s manifest anxiety scale”, Journal of Clinical Child Psychology, 30(4), pp. 552–567.
75. Song, I., Larose, R., Matthew, S.E. and Lin, C.A. (2004), “Internet gratifications and internet addiction: on the uses and abuses of new media”, Cyberpsychology & Behavior, 7(4), pp.384-394.
76. Van Hove, L. (1999), “Electronic money and the network externalities theory: Lessons for real life”, Netnomics, 1(2), pp.137-171.
77. Verplanken, B. & Herabadi, A. (2001). “Individual differences in impulse buying tendency: Feeling and no thinking”, European Journal of personality, 15(1), pp. 71-83.
78. Wills, T.A., DuHamel, K. and Vaccaro, D. (1995) “Activity and mood temperament as predictors of adolescent substance use: Test of a self-regulation mediational model”, Journal of Personality and Social Psychology, 68(5), pp.901-916.
79. Wolfe, V.V., Finch, A.J., Saylor, C.F., Blount, R.L., Pallmeyer, T.P. and Carek D.J. (1987), “Negative affectivity in children: A multitrait-multimethod investigation. Journal of Consulting and Clinical Psychology, 55(2), pp. 245–250.
80. Worden, J.K., Flynn, B.S., Merrill, D.G., Waller, J.A. and Haugh, L.D. (1989), “Preventing alcohol-impaired driving through community self-regulation training”, American Journal of Public Health, 79(3), pp.287-290.
81. Zahn-Waxler, C., Race, E., and Duggal, S. (2005) “Mood disorders and symptoms: The expression and development of depression in girls”, In: Bell D, Foster SL, Mash EJ, editors. Handbook of behavioral and emotional problems in girls (Issues in clinical child psychology) Springer; New York.
82. Zigmond, A.S. and Snaith, R.P. (1983), "The hospital anxiety and depression scale", Acta Psychiatrica Scandinavica, 67 (6), pp.361-370.
83. Zimmerman, B.J. (2000), “Attaining self-regulation: A social cognitive perspective”, In Boekaerts, M., Pintrich,P. R. and Zeidner, M., Handbook of Self-Regulation, Academic Press, San Diego, California, pp.13- 35.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔