跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/06 03:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許恒圓
研究生(外文):Heng-Yuan Hsu
論文名稱:創新性的時序延遲及頻率偏移估算方法研究
論文名稱(外文):Novel Methods for Time Delay and Frequency Offset Estimation
指導教授:林嘉慶林嘉慶引用關係
指導教授(外文):Jia-Chin Lin
學位類別:博士
校院名稱:國立中央大學
系所名稱:通訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:94
中文關鍵詞:互補碼分散式集中式單一雙噪頻率非選擇性衰落
外文關鍵詞:Complementary Code KeyingDistributed TypeCentralized TypeSingle Dual-chirpFrequency-nonselective Fading
相關次數:
  • 被引用被引用:0
  • 點閱點閱:261
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
本論文分為三部份,首先在基頻(Baseband)架構中利用互補碼(Complementary Code Keying, CCK)的特質,針對頻率偏移及補償策略進行研究。本研究提出一種在粗調或微調間切換的頻率偏移估算子系統,以便達到較低的估算錯誤值(Estimation Error)及位元失誤率(Bit Error Rate)。本架構主要利用互補碼的特殊特性,利用簡單的方法萃取到頻率偏移值,而不須要藉由後續的訓練序列碼(Training Sequence)來完成。本研究非常適合應用於以互補碼為基礎的無線區域網路系統中,並達到高速傳送資料的目的。電腦模擬結果,證明本研究可達到優良的系統效能。
本論文接著針對互補碼在無線通信系統基頻中,以系統性的模組設計(Systematic Modular Design),藉以降低系統複雜度及復原時序(Timing Recovery)的策略進行研究。本研究推導出分別為集中式(Centralized Type, CENT)、分散式(Distributed Type, DT)及混合式解調器(Demodulator)的架構,進行評估分析。互補碼解調器架構以系統性的模組化來呈現,是為了能簡化晶片的研製,其中對於混合式CENT_DTMax模組化架構設計,可改善基頻晶片的應用性及可適性,降低複雜度,並保有簡化的頻率偏移估算功能。經由系統的模擬分析,其保有不錯的效能。
最後,對於利用單一雙噪(Single Dual-chirp)前置突波(Preamble Burst)信號,在頻率非選擇性衰落(Frequency-nonselective Fading)的環境下,進行時序延遲及頻率偏移估算的研究。由於雙噪信號自相關函數(Autocorrelation Function)的形狀,不會因為頻率偏移而改變,本研究提出最大相似性(Maximum-likelihood)法則,只利用一對虛擬雜訊匹配濾波器(Pseudo-noise Matched Filters),進行時序延遲估算。取代傳統的一連串的匹配濾波器方式,並且趨近張米樂界限(Miller-Chang Bound, MCB),此方法係使用通道增益及起始相位當作滋擾參數(Nuisance Parameters),做為時序延遲估算的方式。利用雙噪信號轉換的不變性(Invariance)特性,本研究提出一種利用頻域的雜訊匹配濾波器,趨近張米樂界限,估算頻率偏移的技巧。本研究提出完成最大可能性的時序延遲和頻率偏移的方法,達到效能的界限。利用電腦模擬及嚴格的統計分析,可看出它的優點。
This dissertation covers three topics concerning strategies for estimating the time delay and frequency offset. It first examines a frequency offset estimation and compensation strategy that exploits Complementary Code Keying (CCK) in a baseband architecture. The proposed approach can switch between coarse and fine frequency offset estimation subsystems to achieve lower estimation errors and lower bit-error rates (BERs). The architecture primarily exploits the characteristics of the CCK code set; thus it simply extracts the frequency offset without any assistance from a training sequence. The proposed scheme is very effective when used in a CCK-based WLAN system for the purpose of increasing data transmission rate. Computer simulations demonstrate that the proposed scheme and its realization in architecture provide superior overall system performance.
Besides, this dissertation also examines the systematic modular design of a Complementary Code Keying (CCK) baseband modem for wireless communication network applications for reduced complexity. Both centralized-type (CENT) and distributed-type (CENT_DTMax) of CCK demodulator architectures are developed in this dissertation. The CCK demodulator is formulated to facilitate a modular design method to simplify its implementation. Furthermore, a mixed-type demodulator, named as CENT-DTMax, is developed to improve the applicability and feasibility of a modular-based baseband modem. The performance of the proposed demodulator is comparable to that of existing CCK demodulators, since it exhibits both low complexity and simplified clock offset estimation. Additionally, computer simulations indicate that the proposed architecture provides favorable overall system performance.
The last proposed strategy for estimating timing delay and frequency offset exploits a single dual-chirp preamble burst in frequency-nonselective fading environments. Since the shape of the autocorrelation function of the dual-chirp signal does not significantly vary with the different frequency offset values, the proposed scheme estimates a maximum-likelihood (ML) timing-delay by using a single pair of pseudo-noise matched filters (PN MFs), rather than by conventionally using a continuum of MFs. It therefore approaches the Miller-Chang bound (MCB) in its estimate of the timing-delay with a channel gain and an initial phase error as nuisance parameters. By exploiting the invariance under transformation of the dual-chirp signal, the proposed scheme estimates a frequency offset by exploiting frequency-domain PN MFs, and so its estimates of frequency-offset approaches the MCB. The proposed technique provides estimates of ML timing-delay and frequency offset to evaluate the performance bounds. The advantages of the proposed technique are confirmed by rigorous statistical analysis as well as comprehensive computer simulations.
中文摘要…………………………………………………………i
英文摘要…………………………………………………………iii
誌謝 …………………………………………………………v
目錄 …………………………………………………………vi
圖目錄 …………………………………………………………vii
表目錄 …………………………………………………………ix
一、Introduction……………………………………………1
1-1 Overview of CCK Properties…………………………1
1-2 Overview of CCK Modular Design…………………2
1-3 Overview of Dual-chirp Signal Properties…………3
1-4 Section Organization…………………………………6
二、A Frequency Offset Estimation Technique Based on CCK for a WLAN Receiver Design…………………7
2-1 Signal Model and System Description..………………7
2-2 Frequency Offset Estimation…………………………10
2-3 Simulation Experiments.………………………………20
三、A Modular Design for CCK Baseband Modem………26
3-1 Demodulator Design…………………………………26
3-2 Performance Analysis…………………………………35
3-3 Simulation Results and Discussion…………………43
四、Timing-delay and Frequency-offset Estimations for Initial Synchronization on Time-varying Rayleigh Fading Channels 46
4-1 Signal Model and System Derivation…………………46
4-2 Performance Evaluation………………………………57
4-3 Discrete-Time Implementation……………………66
4-4 Numerical Results..…………………………………69
五、Conclusion…………………………………………76
參考文獻 …………………………………………………78
[1]Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications, IEEE Std 802.11b, 1999.
[2]Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications, IEEE Std 802.11g-2003.
[3]Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications, IEEE P802.11n/D2.00, Feb. 2007.
[4]W. Jeong, H. Park, H. Lee, S. Hwang: “Performance Improvement Techniques for CCK-OFDM WLAN Modem,” IEEE Transactions on Consumer Electronics, vol. 49, no. 3, pp. 602-605, Aug. 2003.
[5]J. Joung, G. L. Stüber: “Frequency offset estimation algorithm for π/4-DQPSK TDMA mobile radio,” IEEE Transactions on Veh. Tech., vol. 49, no. 5, pp 1885-1892, Sep. 2000.
[6]F. Edbauer: “Coded 8-DPSK modulation with differentially coherent detection and efficient modulation scheme for fading channels,” in Proc. IEEE Global Telecommun. Conf., Nov. 1987.
[7]K. E. Scott, E. B. Olasz: “Simultaneous clock phase and frequency offset estimation,” IEEE Transactions on Communication, vol. 43, no. 7, pp. 2263-2270, Jul. 1995.
[8]M. Ikura, K. Ohno, F. Adachi: “Baseband processing frequency drift compensation for QDPSK signal transmission,” Electron. Letter, vol. 27, no. 17, pp. 1521-1523, Aug. 1991.
[9]S. Chennakeshu, G. J. Saulnier: “Differential detection of π/4-shifted-DQPSK for digital cellular radio,” IEEE Transactions on Veh. Tech., vol. 42, no. 1, pp. 46–57, Feb. 1993.
[10]S. Saito, T. Takami: “A novel QPSK demodulation LSI (ACT-Demod) for digital mobile radio,” in Proc. IEEE Vehicular Technology Conf., pp. 652-656, May 1991.
[11]J. Li, G. Liu, G. B. Giannakis: “Carrier frequency offset estimation for OFDM-based WLANs”, IEEE Signal Processing Letters, vol. 8, no. 3, pp 80-82, Mar. 2001.
[12]P. H. Moose: “A technique for orthogonal frequency division multi-plexing frequency offset correction,” IEEE Trans. Commun., vol. 42, no. 10, pp. 2908-2914, Oct. 1994.
[13]M. Morelli, U. Mengali: “An improved frequency offset estimator for OFDM applications,” IEEE Commun. Letters, vol. 3, no. 3, pp. 75-77, Mar. 1999.
[14]H. Meyr, M. Moeneclaey, S. A. Fechtel: Digital Communication Receiver, John Wiley & Sons, Inc. 1998.
[15]“Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications”, IEEE P802.11n/D4.00, March 2008.
[16]“The New Mainstream Wireless LAN Standard”, Broadcom, July 2003.
[17]Van Nee, Richard: “OFDM Codes for Peak-to-Average Power Reduction and Error Correc-tion”, IEEE Global Telecommunications Conference, Nov 18-22, 1996, pp.740-744.
[18]B. Sklar: “Digital Communications: Fundamentals and Applications (2nd Edition),” Englewood Cliffs, NJ: Prentice-Hall, 2001.
[19]S.BENEDETTO, E.BIGLIERI, V.CASTELLANI: “ Digital Transmission Theory”, Engle-wood Cliffs, Prentice-Hall, 1987.
[20]R. L. Peterson, R. E. Ziemer, D. Borth: “ Introduction to Spread Spectrum Communications”, Englewood Cliffs, Prentice-Hall, 1995.
[21]J. S. Wu, M. L. Liou, H. P. Ma, T. D. Chiueh: “ A 2.6-V, 44MHz All-Digital QPSK Direct-Sequence Spread Spectrum Transceiver IC”, IEEE J. Solid-State Circuits, vol. 32, no. 10, pp. 1499~1510, Oct., 1997.
[22]Terng-Yin Hsu, Bai-Jue Shieh, Chen-Yi Lee: “An All-Digital Phase-Locked Loop (ADPLL)-Based Clock Recovery Circuit”, IEEE J. Solid-State Circuits, vol. 34, no. 8, pp. 1063~1073, August, 1999.
[23]Carl Andren, Mark Webster: “CCK Modulation Delivers 11Mbps for High Rate IEEE 802.11 Extension”, Harris Semiconductor, N.E, 1999.
[24]“Direct Sequence Spread Spectrum Baseband Processor”, HFA3860B data sheet, intersil July, 1999.
[25]“Direct Sequence Spread Spectrum Baseband Processor”, HFA3861A data sheet, intersil Nov., 1999.
[26]Christof Jonietz, Wolfgang H. Gerstacker, Robert Schober: “Sphere Constrained Detection of Complementary Code Keying Signals Transmitted over Frequency Selective Channels”, IEEE Transactions on Wireless Communications, vol. 8, no. 9, pp. 4656~4667, September 2009.
[27]Batabyal, S., Sarmah, S.J.: “A computationally efficient algorithm for code decision, in CCK based high data rate wireless communications” Personal Wireless Communications, 2002 IEEE International Conference on, vol.1, pp. 143-146, Dec. 2002.
[28]Ata, I.H.M., Qiu Pei Liang: ”Using modified fast Walsh transform (MFWT) to accommodate increasing data rate of IEEE 802.11b PHY WLAN to 22 Mbps” Communications, Circuits and Systems and West Sino Expositions, IEEE 2002 International Conference on, vol.1, pp. 534 – 538, July 2002.
[29]A. Vetro, H. Sun, P. DaGraca, T. Poon: “Minimum drift architectures for three-layer scalable DTV decoding,” IEEE Transactions on Consumer Electron., vol. 44, no. 3, pp. 527-536, Aug. 1998.
[30]Heng-Yuan Hsu, Jia-Chin Lin: “A Frequency Offset Estimation Technique Based on CCK for a WLAN Receiver Design”, IEEE Transactions on Consumer Electronics, December, 2007.
[31]Yusung Lee, Hyuncheol Park: “A RAKE Receiver With an ICI/ISI Equalizer for a CCK Modem,” IEEE Transactions on Vehicular Technology, vol. 58, no. 1, pp. 198-206, January 2009.
[32]Michael B. Pursley, Thomas C. Royster IV: “CCK Modulation: Beyond Wi-Fi,” IEEE Communications, vol. 13, no. 1, January 2009..
[33]Ali Pezeshki, A. Robert Calderbank, William Moran, Stephen D. Howard: “Doppler Resilient Golay Complementary Waveforms,” IEEE Transactions on Information Theory, vol. 54, no. 9, September, 2008.
[34]Michael B. Pursley, Thomas C. Royster IV: “IEEE 802.11b Complementary Code Keying and Complementary Signals Derived from Bi-orthogonal Sequences,” IEEE Communications Society, ICC 2007 proceedings.
[35]Tariq Qureshi, Michael Zoltowski, Robert Calderbank: “MIMO-OFDM Channel Estimation Using Golay Complementary Sequences,” IEEE 2009 International WD&D Conference.
[36]Michael B. Pursley, Thomas C. Royster IV : “Properties and Performance of the IEEE 802.11b Complementary-Code-Key Signal Sets,” IEEE Transactions on Communication, vol. 57, no. 2, February 2009.
[37]Giunta, G., Neri, A., Vandendorpe, L.: ‘Initial code synchronization of W-CDMA mobile systems exploiting local phase coherence and Pisarenko estimation’, IEEE Trans. Commun., 2005, 53, (1), pp. 48–52
[38]J.-C., Lin: ‘Noncoherent sequential PN code acquisition using sliding correlation for chip-asynchronous direct-sequence spread-spectrum communications’, IEEE Trans. Commun., 2002, 50, (4), pp. 664–676.
[39]Prasad, R.: ‘CDMA for wireless personal communications’ (Artech House Publishers, 1996)
[40]Richharia, M., Westbrook, L.D.: ‘Satellite systems for personal applications – concepts and technology’ (Wiley, 2010)
[41]Matolak, D.W., Noerpel, A., Goodings, R., Vander Staay, D., Baldasano, J.: ‘Recent progress in deployment and standardization of geostationary mobile satellite systems’. Proc. Military Communication Conf., 7–10 October 2002, vol. 1, pp. 173–177
[42]Sheriff, R.E., Hu, Y.F.: ‘Mobile satellite communication networks’ (John Wiley & Sons, Ltd, 2001)
[43]Jamalipour, A.: ‘Mobile satellite communications’ (Artech House, 1998)
[44]Wehner, D.R.: ‘High-resolution radar’ (Artech House Publishers, 1994, 2nd ed.)
[45]Z.L., Shi, Antia, Y., Hammons, R.: ‘A sub-burst DFT scheme for CW burst detection in mobile satellite communication’, IEEE J. Sel. Area. Commun., 2000, 18, (3), pp. 380–390
[46]Levanon, N.,Mozeson,E.: ‘Radar signals’ (JohnWiley&Sons, Inc., 2004)
[47]Saha, S., Kay, S.M.: ‘Maximum likelihood parameter estimation of superimposed chirps using Monte Carlo importance sampling’, IEEE Trans. Signal Process., 2002, 50, (2), pp. 224–230
[48]Djuric, P.M., Kay, S.M.: ‘Parameter estimation of chirp signals’, IEEE Trans. Acoust. Speech Signal Process., 1990, 38, (12), pp. 2118–2126
[49]Vishwanath, T.G., Parr, M., Shi, Z.-L., Erlich, S.: ‘Acquisition mechanism for a mobile satellite system’. United States Patent US 7245930 B1, 17 July 2007
[50]Van Trees, H.L.: ‘Detection, estimation, and modulation theory – part iii: radar-sonar signal processing and Gaussian signals in noise’ (John Wiley & Sons, 2001)
[51]Kay, S.M.: ‘Fundamentals of statistical signal processing – estimation theory’ (Prentice Hall International, Inc., 1993)
[52]Srinath, M.D., Rajasekaran, P.K., Viswanathan, R.: ‘Introduction to statistical signal processing with applications’ (Prentice Hall, 1996)
[53]Vishwanath, T.G., Parr, M., Shi, Z.-L., Erlich, S.: ‘Synchronization in mobile satellite systems using dual-chirp waveform’, United States Patent US 6418158 B1, 9 July 2002
[54]J.-C., Lin, Y.-T., Sun: ‘Estimation of timing delay and frequency offset using a dual-chirp sequence’. Proc. Wireless Communications, Vehicular Technology, Information Theory and Aerospace & Electronics Systems Technology, Aalborg, Denmark, Wireless ViTAE 2009, 17–20 May 2009, pp. 862–866
[55]Polydoros, A., Weber, C.L.: ‘A unified approach to serial search spread-spectrum code acquisition – part II: a matched-filter receiver’, IEEE Trans. Commun., 1984, 32, (5), pp. 550–560
[56]Abramowitz, M., Stegun, I.A.: ‘Handbook of mathematical functions’ (Dover Publications, Inc. New York, 1965)
[57]Boumard, S., Mammela, A.: ‘Time domain synchronization using Newman chirp training sequences in AWGN channels’. Proc. 2005 IEEE Int. Conf. Communication (ICC2005), Seoul, Korea, 16–20 May 2005, vol. 2, pp. 1147–1151
[58]Proakis, J.G., Salehi, M.: ‘Digital communications’ (McGraw-Hill, 2008, 5th edition.)
[59]Gini, F., Reggiannini, R.: ‘On the use of Cramér–Rao-like bounds in the presence of random nuisance parameters’, IEEE Trans. Commun., 2000, 48, (12), pp. 2120–2126
[60]Simon, M.K., Alouini, M.-S.: ‘Digital communication over fading channels – a unified approach to performance analysis’ (John Wiley & Sons, 2000, 1st edition.)
[61]PN-4387_05001, TIA/EIA/IS-782.05001, TIA website: http://www. tiaonline.org/
[62]Jakes, W.C.: ‘Microwave mobile communications’ (Wiley, New York, 1974)
[63]3GPP TS 36.211 V8.3.0, Technical Specification Group Radio Access Network; Evolved University Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8), May 2005.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top