|
[1]Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications, IEEE Std 802.11b, 1999. [2]Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications, IEEE Std 802.11g-2003. [3]Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications, IEEE P802.11n/D2.00, Feb. 2007. [4]W. Jeong, H. Park, H. Lee, S. Hwang: “Performance Improvement Techniques for CCK-OFDM WLAN Modem,” IEEE Transactions on Consumer Electronics, vol. 49, no. 3, pp. 602-605, Aug. 2003. [5]J. Joung, G. L. Stüber: “Frequency offset estimation algorithm for π/4-DQPSK TDMA mobile radio,” IEEE Transactions on Veh. Tech., vol. 49, no. 5, pp 1885-1892, Sep. 2000. [6]F. Edbauer: “Coded 8-DPSK modulation with differentially coherent detection and efficient modulation scheme for fading channels,” in Proc. IEEE Global Telecommun. Conf., Nov. 1987. [7]K. E. Scott, E. B. Olasz: “Simultaneous clock phase and frequency offset estimation,” IEEE Transactions on Communication, vol. 43, no. 7, pp. 2263-2270, Jul. 1995. [8]M. Ikura, K. Ohno, F. Adachi: “Baseband processing frequency drift compensation for QDPSK signal transmission,” Electron. Letter, vol. 27, no. 17, pp. 1521-1523, Aug. 1991. [9]S. Chennakeshu, G. J. Saulnier: “Differential detection of π/4-shifted-DQPSK for digital cellular radio,” IEEE Transactions on Veh. Tech., vol. 42, no. 1, pp. 46–57, Feb. 1993. [10]S. Saito, T. Takami: “A novel QPSK demodulation LSI (ACT-Demod) for digital mobile radio,” in Proc. IEEE Vehicular Technology Conf., pp. 652-656, May 1991. [11]J. Li, G. Liu, G. B. Giannakis: “Carrier frequency offset estimation for OFDM-based WLANs”, IEEE Signal Processing Letters, vol. 8, no. 3, pp 80-82, Mar. 2001. [12]P. H. Moose: “A technique for orthogonal frequency division multi-plexing frequency offset correction,” IEEE Trans. Commun., vol. 42, no. 10, pp. 2908-2914, Oct. 1994. [13]M. Morelli, U. Mengali: “An improved frequency offset estimator for OFDM applications,” IEEE Commun. Letters, vol. 3, no. 3, pp. 75-77, Mar. 1999. [14]H. Meyr, M. Moeneclaey, S. A. Fechtel: Digital Communication Receiver, John Wiley & Sons, Inc. 1998. [15]“Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications”, IEEE P802.11n/D4.00, March 2008. [16]“The New Mainstream Wireless LAN Standard”, Broadcom, July 2003. [17]Van Nee, Richard: “OFDM Codes for Peak-to-Average Power Reduction and Error Correc-tion”, IEEE Global Telecommunications Conference, Nov 18-22, 1996, pp.740-744. [18]B. Sklar: “Digital Communications: Fundamentals and Applications (2nd Edition),” Englewood Cliffs, NJ: Prentice-Hall, 2001. [19]S.BENEDETTO, E.BIGLIERI, V.CASTELLANI: “ Digital Transmission Theory”, Engle-wood Cliffs, Prentice-Hall, 1987. [20]R. L. Peterson, R. E. Ziemer, D. Borth: “ Introduction to Spread Spectrum Communications”, Englewood Cliffs, Prentice-Hall, 1995. [21]J. S. Wu, M. L. Liou, H. P. Ma, T. D. Chiueh: “ A 2.6-V, 44MHz All-Digital QPSK Direct-Sequence Spread Spectrum Transceiver IC”, IEEE J. Solid-State Circuits, vol. 32, no. 10, pp. 1499~1510, Oct., 1997. [22]Terng-Yin Hsu, Bai-Jue Shieh, Chen-Yi Lee: “An All-Digital Phase-Locked Loop (ADPLL)-Based Clock Recovery Circuit”, IEEE J. Solid-State Circuits, vol. 34, no. 8, pp. 1063~1073, August, 1999. [23]Carl Andren, Mark Webster: “CCK Modulation Delivers 11Mbps for High Rate IEEE 802.11 Extension”, Harris Semiconductor, N.E, 1999. [24]“Direct Sequence Spread Spectrum Baseband Processor”, HFA3860B data sheet, intersil July, 1999. [25]“Direct Sequence Spread Spectrum Baseband Processor”, HFA3861A data sheet, intersil Nov., 1999. [26]Christof Jonietz, Wolfgang H. Gerstacker, Robert Schober: “Sphere Constrained Detection of Complementary Code Keying Signals Transmitted over Frequency Selective Channels”, IEEE Transactions on Wireless Communications, vol. 8, no. 9, pp. 4656~4667, September 2009. [27]Batabyal, S., Sarmah, S.J.: “A computationally efficient algorithm for code decision, in CCK based high data rate wireless communications” Personal Wireless Communications, 2002 IEEE International Conference on, vol.1, pp. 143-146, Dec. 2002. [28]Ata, I.H.M., Qiu Pei Liang: ”Using modified fast Walsh transform (MFWT) to accommodate increasing data rate of IEEE 802.11b PHY WLAN to 22 Mbps” Communications, Circuits and Systems and West Sino Expositions, IEEE 2002 International Conference on, vol.1, pp. 534 – 538, July 2002. [29]A. Vetro, H. Sun, P. DaGraca, T. Poon: “Minimum drift architectures for three-layer scalable DTV decoding,” IEEE Transactions on Consumer Electron., vol. 44, no. 3, pp. 527-536, Aug. 1998. [30]Heng-Yuan Hsu, Jia-Chin Lin: “A Frequency Offset Estimation Technique Based on CCK for a WLAN Receiver Design”, IEEE Transactions on Consumer Electronics, December, 2007. [31]Yusung Lee, Hyuncheol Park: “A RAKE Receiver With an ICI/ISI Equalizer for a CCK Modem,” IEEE Transactions on Vehicular Technology, vol. 58, no. 1, pp. 198-206, January 2009. [32]Michael B. Pursley, Thomas C. Royster IV: “CCK Modulation: Beyond Wi-Fi,” IEEE Communications, vol. 13, no. 1, January 2009.. [33]Ali Pezeshki, A. Robert Calderbank, William Moran, Stephen D. Howard: “Doppler Resilient Golay Complementary Waveforms,” IEEE Transactions on Information Theory, vol. 54, no. 9, September, 2008. [34]Michael B. Pursley, Thomas C. Royster IV: “IEEE 802.11b Complementary Code Keying and Complementary Signals Derived from Bi-orthogonal Sequences,” IEEE Communications Society, ICC 2007 proceedings. [35]Tariq Qureshi, Michael Zoltowski, Robert Calderbank: “MIMO-OFDM Channel Estimation Using Golay Complementary Sequences,” IEEE 2009 International WD&D Conference. [36]Michael B. Pursley, Thomas C. Royster IV : “Properties and Performance of the IEEE 802.11b Complementary-Code-Key Signal Sets,” IEEE Transactions on Communication, vol. 57, no. 2, February 2009. [37]Giunta, G., Neri, A., Vandendorpe, L.: ‘Initial code synchronization of W-CDMA mobile systems exploiting local phase coherence and Pisarenko estimation’, IEEE Trans. Commun., 2005, 53, (1), pp. 48–52 [38]J.-C., Lin: ‘Noncoherent sequential PN code acquisition using sliding correlation for chip-asynchronous direct-sequence spread-spectrum communications’, IEEE Trans. Commun., 2002, 50, (4), pp. 664–676. [39]Prasad, R.: ‘CDMA for wireless personal communications’ (Artech House Publishers, 1996) [40]Richharia, M., Westbrook, L.D.: ‘Satellite systems for personal applications – concepts and technology’ (Wiley, 2010) [41]Matolak, D.W., Noerpel, A., Goodings, R., Vander Staay, D., Baldasano, J.: ‘Recent progress in deployment and standardization of geostationary mobile satellite systems’. Proc. Military Communication Conf., 7–10 October 2002, vol. 1, pp. 173–177 [42]Sheriff, R.E., Hu, Y.F.: ‘Mobile satellite communication networks’ (John Wiley & Sons, Ltd, 2001) [43]Jamalipour, A.: ‘Mobile satellite communications’ (Artech House, 1998) [44]Wehner, D.R.: ‘High-resolution radar’ (Artech House Publishers, 1994, 2nd ed.) [45]Z.L., Shi, Antia, Y., Hammons, R.: ‘A sub-burst DFT scheme for CW burst detection in mobile satellite communication’, IEEE J. Sel. Area. Commun., 2000, 18, (3), pp. 380–390 [46]Levanon, N.,Mozeson,E.: ‘Radar signals’ (JohnWiley&Sons, Inc., 2004) [47]Saha, S., Kay, S.M.: ‘Maximum likelihood parameter estimation of superimposed chirps using Monte Carlo importance sampling’, IEEE Trans. Signal Process., 2002, 50, (2), pp. 224–230 [48]Djuric, P.M., Kay, S.M.: ‘Parameter estimation of chirp signals’, IEEE Trans. Acoust. Speech Signal Process., 1990, 38, (12), pp. 2118–2126 [49]Vishwanath, T.G., Parr, M., Shi, Z.-L., Erlich, S.: ‘Acquisition mechanism for a mobile satellite system’. United States Patent US 7245930 B1, 17 July 2007 [50]Van Trees, H.L.: ‘Detection, estimation, and modulation theory – part iii: radar-sonar signal processing and Gaussian signals in noise’ (John Wiley & Sons, 2001) [51]Kay, S.M.: ‘Fundamentals of statistical signal processing – estimation theory’ (Prentice Hall International, Inc., 1993) [52]Srinath, M.D., Rajasekaran, P.K., Viswanathan, R.: ‘Introduction to statistical signal processing with applications’ (Prentice Hall, 1996) [53]Vishwanath, T.G., Parr, M., Shi, Z.-L., Erlich, S.: ‘Synchronization in mobile satellite systems using dual-chirp waveform’, United States Patent US 6418158 B1, 9 July 2002 [54]J.-C., Lin, Y.-T., Sun: ‘Estimation of timing delay and frequency offset using a dual-chirp sequence’. Proc. Wireless Communications, Vehicular Technology, Information Theory and Aerospace & Electronics Systems Technology, Aalborg, Denmark, Wireless ViTAE 2009, 17–20 May 2009, pp. 862–866 [55]Polydoros, A., Weber, C.L.: ‘A unified approach to serial search spread-spectrum code acquisition – part II: a matched-filter receiver’, IEEE Trans. Commun., 1984, 32, (5), pp. 550–560 [56]Abramowitz, M., Stegun, I.A.: ‘Handbook of mathematical functions’ (Dover Publications, Inc. New York, 1965) [57]Boumard, S., Mammela, A.: ‘Time domain synchronization using Newman chirp training sequences in AWGN channels’. Proc. 2005 IEEE Int. Conf. Communication (ICC2005), Seoul, Korea, 16–20 May 2005, vol. 2, pp. 1147–1151 [58]Proakis, J.G., Salehi, M.: ‘Digital communications’ (McGraw-Hill, 2008, 5th edition.) [59]Gini, F., Reggiannini, R.: ‘On the use of Cramér–Rao-like bounds in the presence of random nuisance parameters’, IEEE Trans. Commun., 2000, 48, (12), pp. 2120–2126 [60]Simon, M.K., Alouini, M.-S.: ‘Digital communication over fading channels – a unified approach to performance analysis’ (John Wiley & Sons, 2000, 1st edition.) [61]PN-4387_05001, TIA/EIA/IS-782.05001, TIA website: http://www. tiaonline.org/ [62]Jakes, W.C.: ‘Microwave mobile communications’ (Wiley, New York, 1974) [63]3GPP TS 36.211 V8.3.0, Technical Specification Group Radio Access Network; Evolved University Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8), May 2005.
|