( 您好!臺灣時間:2021/04/11 03:20
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Po- Rung Jiang
論文名稱(外文):Cellular and Molecular Study in Thioacetamide Induced Edema in Pericardial Sac during Zebrafish Development
指導教授(外文):Chuian - Fu Ken, Ph.D.
外文關鍵詞:ThioacetamideEdema in Pericardial Sac
  • 被引用被引用:1
  • 點閱點閱:192
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Thioacetamide (TAA) 是一種肝毒性物質,已證實處理老鼠和斑馬魚後均有肝癌的形成,但是對於動物胚胎發育是否具有毒性並不清楚。在先前的研究中,我們利用0-32 mM TAA處理後第六小時,胚胎的存活率顯著下降至約80%,並且心包膜有edema的現象,為了探討TAA造成edema的分子機制為何和基因表現的情形,我們利用組織切片分析斑馬魚胚胎發育時之細胞變化結果發現TAA造成 pericardial附近聚集許多已活化的Mast Cell,進而利用Microarray 分析與TAA抑制心臟早期發育相關基因nrp2b及mef2cb 的表現。利用RT-PCR和real-time qPCR定量的結果證實TAA處理後第6-24 hpf胚胎內mef2cb 和 nrp2b基因表現量減少一倍,接著利用mopholino去konck-down 胚胎內mef2cb 和 nrp2b基因的表現,明顯在24小時有56% 和55%心包膜出現edema,證實TAA可透過抑制nrp2b &;mef2cb基因表現而造成edema。本實驗室先前已經證明TAA可誘導胚胎大量產生H2O2 ,因此我們利用4 mM H2O2 處理胚胎6-24小時後,再以RT-PCR和real-time qPCR定量,發現胚胎內mef2cb 和 nrp2b基因表現量顯著減少2倍以上也造成胚胎edema顯著增加,存活率下降。我們也將胚胎處理4mM H2O2至60 phf後不僅會造成edema in pericardial sac也會使Mast Cell聚集在pericardial附近。由以上的結果可以得知TAA會誘導胚胎大量產生H2O2使nrp2b和mef2cb表現量下降並導致胚胎時期心包膜出現edema最終造成死亡。未來將證明Mast Cell的活化是否造成edema in pericardial sac主要因素。
Thioacetamide (TAA) is a hepatotoxin that can cause hepatocellular carcinoma in mice, but little is known about its toxic effect on embryonic development. In the previous study, we treated zebrafish embryos with 0-32 mM TAA for 0-72 h, the survival rate were decreased to about 80% and the edema in pericardial sac (eps) were shown. For understanding the mechanism about TAA teratogenesis, we used DNA microarray to analyze the gene expression in zebrafish embryos when responses to TAA treatment. After data mining, there are 46 genes associated with organogenesis, and 107 genes involved in regulation of transcription. Among these genes, nrp2b and mef2cb were down-regulated to 2 or 1.8 fold after TAA treatment. nrp2b is a receptor that VEGF-mediated vascular development and mef2cb as a novel regulator in heart development. We then test the TAA downregulated nrp2b and mef2cb that can cause the edema in pericardial sac. 32 mM TAA treated embryos showed significantly decreased nrp2b and mef2cb gene expression, knock-down either nrp2b or mef2cb caused 55% and 56% eps on 24hpf, the results were the same as TAA treated embryos. Our laboratory has demonstrated previously the TAA induce embryonic a lot of produce H2O2. Therefore, we use 4 mM H2O2. treatment embryonic 6-24 hours then of quantitative RT-PCR and real-time qPCR, significantly reduce the more than 2 fold also caused a increase in embryonic eps the embryo mef2cb nrp2b amount of gene expression and increased mortality rate. Embryos processing 4mM H2O2 to 60 phf will not only cause eps makes Mast Cell aggregation in the pericardial sac near。By the above results, you can see that the TAA induce embryonic large number of generated the H2O2 that cuase reduce nrp2b and mef2cb gene expression and lead to eps eventually leading to death.
中文摘要 II
誌謝 VI
縮寫表 VII
第一章、前言 1
第一節、肝毒性物質TAA 1
第三節、TAA造成EPS與基因的關係 5
第四節、ROS當作細胞生理的訊息分子 8
第五節、實驗動機 11
第二章、實驗材料 13
第三章、實驗步驟 19
第一節、TAA處理斑馬魚胚胎 19
第二節、TAA處理BMP4:EGFP基因轉殖魚胚胎 19
第三節、組織切片 19
第五節、MICROARRAY的作法 23
第四章 結果 38
第一節、以肝毒性物質TAA處理WLID TYPE斑馬魚胚胎 38
引起的 38
第三節、TAA抑制MEF2CB及NRP2B基因表現與EPS 形成的關聯性探討 42
第五節、H2O2 抑制MEF2CB及NRP2B的MRNA表現 45
的影響 47
第八節、結論 47
第五章 討論 49
第二節 未來展望 54
第六章、參考文獻 55
第七章、圖表 60
第八章、附錄 83
附錄一、YT&;A保存載體 83
附錄二、PGEM-T表現載體 84
Abraham, S.N., and John, A.L.S. (2010). Mast cell-orchestrated immunity to pathogens. Nature Reviews Immunology 10, 440-452.
Amann, R., Schuligoi, R., Lanz, I., and Donnerer, J. (1995). Histamine-induced edema in the rat paw--effect of capsaicin denervation and a CGRP receptor antagonist. European journal of pharmacology 279, 227-231.
Andersen, J.K. (2004). Oxidative stress in neurodegeneration: cause or consequence? Nat Med 10 Suppl, S18-25.
Andrés, D., Sánchez-Reus, I., Bautista, M., and Cascales, M. (2003). Depletion of Kupffer cell function by gadolinium chloride attenuates thioacetamide-induced hepatotoxicity:: Expression of metallothionein and HSP70. Biochemical pharmacology 66, 917-926.
Antkiewicz, D.S., Burns, C.G., Carney, S.A., Peterson, R.E., and Heideman, W. (2005). Heart malformation is an early response to TCDD in embryonic zebrafish. Toxicological Sciences 84, 368-377.
Balaban, R.S., Nemoto, S., and Finkel, T. (2005). Mitochondria, oxidants, and aging. Cell 120, 483-495.
Beckman, K.B., and Ames, B.N. (1998). The free radical theory of aging matures. Physiol Rev 78, 547-581.
Breitbart, R.E., Liang, C., Smoot, L.B., Laheru, D.A., Mahdavi, V., and Nadal-Ginard, B. (1993). A fourth human MEF2 transcription factor, hMEF2D, is an early marker of the myogenic lineage. Development 118, 1095-1106.
Brookes, P.S., Yoon, Y., Robotham, J.L., Anders, M., and Sheu, S.S. (2004). Calcium, ATP, and ROS: a mitochondrial love-hate triangle. American Journal of Physiology-Cell Physiology 287, C817-C833.
Brooks, A., Whelan, C., and Purcell, W. (1999). Reactive oxygen species generation and histamine release by activated mast cells: modulation by nitric oxide synthase inhibition. British journal of pharmacology 128, 585-590.
Chen, J.N., Van Eeden, F., Warren, K.S., Chin, A., Nusslein-Volhard, C., Haffter, P., and Fishman, M.C. (1997). Left-right pattern of cardiac BMP4 may drive asymmetry of the heart in zebrafish. Development 124, 4373-4382.
Chilakapati, J., Korrapati, M.C., Hill, R.A., Warbritton, A., Latendresse, J.R., and Mehendale, H.M. (2007). Toxicokinetics and toxicity of thioacetamide sulfoxide: a metabolite of thioacetamide. Toxicology 230, 105-116.
Chilakapati, J., Shankar, K., Korrapati, M.C., Hill, R.A., and Mehendale, H.M. (2005). Saturation toxicokinetics of thioacetamide: role in initiation of liver injury. Drug Metab Dispos 33, 1877-1885.
Childs, J., and Siegler, E. (1945). Compounds for control of orange decays. Science 102, 68.
Clerk, A., Kemp, T.J., Zoumpoulidou, G., and Sugden, P.H. (2007). Cardiac myocyte gene expression profiling during H2O2-induced apoptosis. Physiological genomics 29, 118-127.
D'Autréaux, B., and Toledano, M.B. (2007). ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nature Reviews Molecular Cell Biology 8, 813-824.
Dobson, J.T., Seibert, J., Teh, E.M., Da'as, S., Fraser, R.B., Paw, B.H., Lin, T.J., and Berman, J.N. (2008). Carboxypeptidase A5 identifies a novel mast cell lineage in the zebrafish providing new insight into mast cell fate determination. Blood 112, 2969-2972.
Dyroff, M.C., and Neal, R.A. (1981). Identification of the major protein adduct formed in rat liver after thioacetamide administration. Cancer research 41, 3430-3435.
Favier, B., Alam, A., Barron, P., Bonnin, J., Laboudie, P., Fons, P., Mandron, M., Herault, J.P., Neufeld, G., and Savi, P. (2006). Neuropilin-2 interacts with VEGFR-2 and VEGFR-3 and promotes human endothelial cell survival and migration. Blood 108, 1243.
Fitzhugh, O.G., and Nelson, A.A. (1948). Liver Tumors in Rats Fed Thiourea or Thioacetamide. Science 108, 626-628.
Gu, K., Zhao, J.D., Ren, Z.G., Ma, N.Y., Lai, S.T., Wang, J., Liu, J., and Jiang, G.L. (2011). A natural process of cirrhosis resolution and deceleration of liver regeneration after thioacetamide withdrawal in a rat model. Mol Biol Rep 38, 1687-1696.
Halliwell, B., and Gutteridge, J. (1990). Role of free radicals and catalytic metal ions in human disease: an overview. Methods in enzymology 186, 1.
Hinits, Y., Pan, L., Walker, C., Dowd, J., Moens, C.B., and Hughes, S.M. (2012). Zebrafish Mef2ca and Mef2cb are essential for both first and second heart field cardiomyocyte differentiation. Developmental biology.
Hunter, A., Holscher, M., and Neal, R. (1977). Thioacetamide-induced hepatic necrosis. I. Involvement of the mixed-function oxidase enzyme system. Journal of Pharmacology and Experimental Therapeutics 200, 439-448.
Klaunig, J.E., and Kamendulis, L.M. (2004). The role of oxidative stress in carcinogenesis. Annu Rev Pharmacol Toxicol 44, 239-267.
Kwak, K.G., Wang, J.H., Shin, J.W., Lee, D.S., and Son, C.G. (2011). A traditional formula, Chunggan extract, attenuates thioacetamide-induced hepatofibrosis via GSH system in rats. Human &; experimental toxicology 30, 1322-1332.
Lambeth, J.D. (2004). NOX enzymes and the biology of reactive oxygen. Nature Reviews Immunology 4, 181-189.
Lazic, S., and Scott, I.C. (2011). Mef2cb regulates late myocardial cell addition from a second heart field-like population of progenitors in zebrafish. Developmental biology.
Lee, K.S., Kim, S.R., Park, S.J., Park, H.S., Min, K.H., Lee, M.H., Jin, S.M., Jin, G.Y., Yoo, W.H., and Lee, Y.C. (2006). Hydrogen peroxide induces vascular permeability via regulation of vascular endothelial growth factor. American journal of respiratory cell and molecular biology 35, 190-197.
Liu, L., Zhang, H., Zhang, Q., and Guo, X. (2010). Effects of insulin-like growth factor binding protein-related protein 1 in mice with hepatic fibrosis induced by thioacetamide. Chinese medical journal 123, 2521-2526.
Ma, Z., Zhang, Y., Huet, P., and Lee, S.S. (1999). Differential effects of jaundice and cirrhosis on β-adrenoceptor signaling in three rat models of cirrhotic cardiomyopathy. Journal of hepatology 30, 485-491.
Makazan, Z., Saini, H.K., and Dhalla, N.S. (2007). Role of oxidative stress in alterations of mitochondrial function in ischemic-reperfused hearts. Am J Physiol Heart Circ Physiol 292, H1986-1994.
Martyn, U., and Schulte‐Merker, S. (2004). Zebrafish neuropilins are differentially expressed and interact with vascular endothelial growth factor during embryonic vascular development. Developmental dynamics 231, 33-42.
McDermott, J., Cardoso, M., Yu, Y., Andres, V., Leifer, D., Krainc, D., Lipton, S., and Nadal-Ginard, B. (1993). hMEF2C gene encodes skeletal muscle-and brain-specific transcription factors. Molecular and cellular biology 13, 2564-2577.
Molkentin, J.D., Black, B.L., Martin, J.F., and Olson, E.N. (1996). Mutational analysis of the DNA binding, dimerization, and transcriptional activation domains of MEF2C. Molecular and cellular biology 16, 2627-2636.
Muñoz, J.P., Collao, A., Chiong, M., Maldonado, C., Adasme, T., Carrasco, L., Ocaranza, P., Bravo, R., Gonzalez, L., and Díaz-Araya, G. (2009). The transcription factor MEF2C mediates cardiomyocyte hypertrophy induced by IGF-1 signaling. Biochemical and biophysical research communications 388, 155-160.
Niu, X.F., Ibbotson, G., and Kubes, P. (1996). A Balance Between Nitric Oxide and Oxidants Regulates Mast Cell–Dependent Neutrophil–Endothelial Cell Interactions. Circulation research 79, 992-999.
Pollock, R., and Treisman, R. (1991). Human SRF-related proteins: DNA-binding properties and potential regulatory targets. Genes &; development 5, 2327-2341.
Porter, W., Gudzinowicz, M., and Neal, R. (1979). Thioacetamide-induced hepatic necrosis. II. Pharmacokinetics of thioacetamide and thioacetamide-S-oxide in the rat. Journal of Pharmacology and Experimental Therapeutics 208, 386-391.
Porter, W.R., and Neal, R.A. (1978). Metabolism of thioacetamide and thioacetamide S-oxide by rat liver microsomes. Drug Metabolism and Disposition 6, 379-388.
Reid, T.M., and Loeb, L.A. (1993). Effect of DNA-repair enzymes on mutagenesis by oxygen free radicals. Mutat Res 289, 181-186.
Rekha, R.D., Amali, A.A., Her, G.M., Yeh, Y.H., Gong, H.Y., Hu, S.Y., Lin, G.H., and Wu, J.L. (2008). Thioacetamide accelerates steatohepatitis, cirrhosis and HCC by expressing HCV core protein in transgenic zebrafish Danio rerio. Toxicology 243, 11-22.
Sanz, N., Diez-Fernandez, C., Andres, D., and Cascales, M. (2002). Hepatotoxicity and aging: endogenous antioxidant systems in hepatocytes from 2-, 6-, 12-, 18- and 30-month-old rats following a necrogenic dose of thioacetamide. Biochim Biophys Acta 1587, 12-20.
Scandalios, J.G. (2005). Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Med Biol Res 38, 995-1014.
Searcy, R.D., Vincent, E.B., Liberatore, C.M., and Yutzey, K.E. (1998). A GATA-dependent nkx-2.5 regulatory element activates early cardiac gene expression in transgenic mice. Development 125, 4461-4470.
Sittig, M. (1985). Isopropyl Amine. Handbook of Toxic and Hazardous Chemicals and Carcinogens, 534-535.
Stainier, D.Y.R. (2001). Zebrafish genetics and vertebrate heart formation. Nature Reviews Genetics 2, 39-48.
Suzuki, Y., Yoshimaru, T., Inoue, T., Niide, O., and Ra, C. (2005). Role of oxidants in mast cell activation.
Suzuki, Y., Yoshimaru, T., Inoue, T., and Ra, C. (2009). Discrete generations of intracellular hydrogen peroxide and superoxide in antigen-stimulated mast cells: Reciprocal regulation of store-operated Ca2+ channel activity. Molecular immunology 46, 2200-2209.
Suzuki, Y., Yoshimaru, T., Matsui, T., Inoue, T., Niide, O., Nunomura, S., and Ra, C. (2003). FcεRI signaling of mast cells activates intracellular production of hydrogen peroxide: role in the regulation of calcium signals. The Journal of Immunology 171, 6119-6127.
Swindle, E.J., and Metcalfe, D.D. (2007). The role of reactive oxygen species and nitric oxide in mast cell‐dependent inflammatory processes. Immunological reviews 217, 186-205.
Wang, T., Shankar, K., Ronis, M.J.J., and Mehendale, H.M. (2000). Potentiation of thioacetamide liver injury in diabetic rats is due to induced CYP2E1. Journal of Pharmacology and Experimental Therapeutics 294, 473-479.
Wild, J.R.L., Staton, C.A., Chapple, K., and Corfe, B.M. (2012). Neuropilins: expression and roles in the epithelium. International Journal of Experimental Pathology 93, 81-103.
Wolfreys, K., and Oliveira, D.B.G. (1997). Alterations in intracellular reactive oxygen species generation and redox potential modulate mast cell function. European journal of immunology 27, 297-306.
Wu, J.Y., Lin, C.Y., Lin, T.W., Ken, C.F., and Wen, Y.D. (2007). Curcumin affects development of zebrafish embryo. Biological and Pharmaceutical Bulletin 30, 1336-1339.
Yoshimaru, T., Suzuki, Y., Inoue, T., Niide, O., and Ra, C. (2006). Silver activates mast cells through reactive oxygen species production and a thiol-sensitive store-independent Ca2+ influx. Free Radical Biology and Medicine 40, 1949-1959.
Zaragoza, A., Andres, D., Sarrion, D., and Cascales, M. (2000). Potentiation of thioacetamide hepatotoxicity by phenobarbital pretreatment in rats. Inducibility of FAD monooxygenase system and age effect. Chem Biol Interact 124, 87-101.
Zhang, H., and Bradley, A. (1996). Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development 122, 2977-2986

註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔