跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/25 16:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃昭憲
研究生(外文):Chao-Hsien Huang
論文名稱:形狀不對稱鎳鐵磁性元件對於控制磁渦漩態之影響
論文名稱(外文):Effect of asymmetric shape on vortex control in Permalloy elements
指導教授:洪連輝洪連輝引用關係
指導教授(外文):Lance Horng
學位類別:博士
校院名稱:國立彰化師範大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:113
中文關鍵詞:形狀不對稱磁渦漩態鎳鐵
外文關鍵詞:asymmetric shapevortexpermalloy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:174
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要在探討形狀不對稱性對於鎳鐵磁盤及磁環上的磁渦漩態的影響。藉由在圓盤上引入一個平邊製作成不對稱圓盤 (切邊圓)或是製作一個缺陷偏離圓心的不對稱圓環,改變不同的直徑大小與切邊角或內直徑及偏移量,探討不同的形狀不對稱性對於磁渦漩態的控制有何影響。在切邊圓的部份,直徑為500奈米,改變其切邊角從15度到90度,厚度為40奈米的不對稱圓盤,發現其磁渦漩態的生成場及消滅場對不對稱比例都呈現一線性關係。我們可以利用此一線性關係,藉由改變不同切邊角達到控制其磁渦漩態的生成場及消滅場。此外,若是施加一定值的y方向磁場,也可以達到控制其生成場及消滅場的目的。另外在不對稱圓環的部份,改變外直徑為300、500、800及1000奈米,發現其生成場與消滅場對於不對稱比例也有其對應的線性關係。值得注意的是:生成場與內直徑及偏移量的改變較沒關係,直接與不對稱比例有較大的正相關。當縮小外直徑或改變其厚度時,發現其磁翻轉行為會有所不同,可分為一次性的翻轉及會進入磁渦漩態或完全不進入磁渦漩態等不同的翻轉模式。另外藉由電子束微影製作的不對稱圓環陣列以磁光柯爾系統量測出其歸一化的磁滯曲線所得出的實驗值與模擬值作比較,發現其翻轉行為非常類似,也呈現出一線性關係,但其數值會有一段接近定值的偏移。這些關係顯示出不對稱的鎳鐵圓環磁渦漩態的生成場及消滅場可以藉由改變其形狀異向性達到控制的目的,並且其翻轉行為在實驗與模擬中也非常相似。
The degree of asymmetry was studied in asymmetric disks and rings by introducing a one-side-flat edge to a disk and an inner circle shifted from the center of the outer circle by a shift length, respectively. In the excised angles were varied from 15 to 90 in 500-nm-diameter and 40-nm-thick Permalloy disk arrays, it is observed the dependences of vortex nucleation and annihilation fields on the asymmetry. Linear relations of vortex nucleation and annihilation fields to aspect ratio were found that would be useful for controlling nucleation and annihilation fields on purpose. In addition to magnetic field parallel to excised flat edge, the constant perpendicular field (Hy) applied to sample could change vortex nucleation and annihilation field of Py disk array. The switching fields of Hn and Han, analyzed from the simulated hysteresis loops of 300, 500, 800 and 1000 nm outer diameters, have linear relationships to the asymmetric ratio. The vortex nucleation (Hn) and vortex annihilation (Han) fields, analyzed from the simulated and experimental hysteresis loops have linear relations to the asymmetric ratio. It is noteworthy that a linear relationship for Hn is independent on the variation of the inner diameters and is only dependent on the asymmetric ratio. In the asymmetric ring with Do = 300 nm and varying thickness, it was observed that vortex nucleation fields increase with the asymmetric ratio increase for a constant thickness. When the lateral size reduces down to nano-size, two switching behaviors of simulated hysteresis loops were observed. The single switching loop indicates that the switching process is single-domain switching and the all the spins rotating coherently. The double switching loop corresponds to the switching process via the formation of a vortex state. The both analyzed switching fields from experiment and simulation present a linear relation with the aspect ratio in the small range of variation. This relation indicates that the Hn and Han of asymmetric ring arrays are mainly controlled by the shape anisotropy. It was observed that the switching behaviors of simulated and experimental results are also similar.
Table of contents

Chapter 1 Introduction 1
Chapter 2 Basic Theories 3
2-1 Basic principles of Micromagnetics 3
2-2 Energy terms 7
2-3 Domain structure 11
2-4 Magneto-optical Kerr effect 14
2-4-1 Experimental Kerr configurations 15
2-4-2 MOKE signal for a thick magnetic medium 17
2-4-3 Schematics of a MOKE experiment 20
Chapter 3 Experimental Methods 21
3-1 OOMMF software 21
3-2 Fabrication processes 32
3-2-1 Electron beam lithography 32
3-2-2 Sputtering 36
3-2-3 MOKE magnetometry 37
3-3 Fabrication processes 41
Chapter 4 Results and Discussion 49
4-1 The influence of degree of asymmetry on vortex configuration in asymmetric Permalloy disk arrays 51
4-2 The influence of degree of asymmetry on vortex configuration in a Permalloy ring 66
4-2-1 Previous reports 66
4-2-2 Results and Discussion 70
4-3 The influence of ring dimension on vortex configuration in an asymmetric Permalloy ring 79
4-3-1 Varying the outer diameter 79
4-3-2 Varying the Permalloy thickness 83
4-3-3 The influence of dimension in an asymmmetric ring
with nano-size 88
4-4 Experiment and simulation results 97
4-5 Demagnetization energy density on asymmetry 103
Chapter 5 Conclusions 107
Reference 109
Publication list 112

List of Figures
Fig. 2-1 the magnetization vector precedes around the direction of the effective field. In a real sample the damping term of LLG equation cause the magnetization to align with the effective field after a characteristic time. 4
Fig. 2-2 Block wall structure. 11
Fig. 2-3 Néel’s view of domain in the thin film. 12
Fig. 2-4 Formation of domains reduces the stray field. 13
Fig. 2-5 Magneto-optical effect in transmission and reflection geometry called Faraday effect and magneto-optical Kerr effect, respectively. 14
Fig. 2-6 Three basic configurations for (a) longitudinal-, (b) transverse-, and (c) polar- magneto-optical Kerr effect 15
Fig. 2-7 The coordinate system for a thick magnetic medium involving a nonmagnetic medium 0 and a magnetic medium 1. 18
Fig 2-8 Schematic diagram of MOKE measurement system. 20
Fig. 3-1 mmLaunch, main form of the OOMMF system. 23
Fig. 3-2 Form of mmProbEd program. 23
Fig. 3-3 Input form of Material Parameters. 24
Fig. 3-4 Input form of Demag Specifications. 24
Fig. 3-5 Input form of Part Geometry. 25
Fig. 3-6 Input form of Initial Mag. 25
Fig. 3-7 Input form of Experiment Parameters. 26
Fig. 3-8 Input form of Output Specifications. 26
Fig. 3-9 Input form of Miscellaneous. 27
Fig. 3-10 Input form of mmSolve2D 28
Fig. 3-11 mmDisp displays two-dimensional spatial distributions of three-dimensional vector. 28
Fig. 3-12 mmDataTable, it display the selected values of quantities computed by a micromagnetic solver program. 29
Fig. 3-13 mmGraph provide 2D line plots. 30
Fig. 3-14 mmArchive window. 30
Fig. 3-15 Illustration of projection for electron beam in a SEM. 34
Fig. 3-16 Picture of SEM combined with NPGS. 35
Fig. 3-17 Picture of the high vacuum sputtering system. 36
Fig. 3-18 Focused MOKE magnetometry in longitudinal geometry. 38
Fig. 3-19 Illustration of focused magneto-optical Kerr effect magnetometry configuration. 38
Fig. 3-20 Schematic diagram of Wollaston Prism. 40
Fig. 3-21 Illustration of one-side-flat asymmetric disk and excised angle. 41
Fig. 3-22 Illustration of asymmetric ring 42
Fig. 3-23 Schematic illustrations of fabrication processes. 44
Fig. 3-24 SEM images of 500-nm-diamter series of asymmetric NiFe disk array, in which has excised angel of (a) 30°, (b) 45°, (c) 60°, and (d) 90°, respectively. 46
Fig. 3-25 (a) Geometry of the asymmetric ring. SEM images of asymmetric Py rings with Do = 1000 nm, d = 500 nm, a thickness of 20 nm, and (b) the shift length, S = 0 nm. (c) the shift length, S = 50 nm. (d) the shift length, S = 100 nm. (e) the shift length, S = 150 nm. (f) the shift length, S = 200 nm. 47
Fig. 3-26 (a) Geometry of the asymmetric ring. SEM images of asymmetric Py rings with Do = 1000 nm, d = 300 nm, a thickness of 20 nm, and (b) the shift length, S = 100 nm. (c) the shift length, S = 150 nm. (d) the shift length, S = 200 nm. 48
Fig. 4-1 Images of Lorentz microscopy images of the asymmetric dots at remanent state after the application of a magnetic field of 200 Oe in (a) –x, and (b) +x directions. The spots originate from a vortex configuration in the magnetic dots. The bright spot corresponds to a clockwise, the dark spot to a counterclockwise rotation, due to the defocusing and focusing effect of the magnetization pattern on the electron beam, respectively. [7] 53
Fig. 4-2 (a)~(c) Model for the evolution of the vortex, and (d) LTEM image of a disk with CW vortex. The circular clockwise magnetization distribution causes the bright spot at the disk center in the image. [7] 54
Fig. 4-3. Scanning electron microscopy images of Py disk arrays, in which the elements with a diameter of 500nm, a thickness of 40nm, and excised angles is 15°, 30°, 60°, 75°, and 90°. 55
Fig. 4-4. (a) Hysteresis loops of Py array with excised angles of 15° and 30° (Low asymmetry case). (b) Hysteresis loops of Py array with excised angles of 60°, 75° and 90° (High asymmetry case). 57
Fig. 4-5. Calculated hysteresis loops simulated for 500-nm-diameter and 40-nm-thickness NiFe disk with θ= 15° and 30° (a) 2×2 array. (b) 3×3 array ,and (c) magnetization configurations of simulated disk arrays with θ= 30° at external fields of (i) 1100 Oe, (ii) 260 Oe, (iii) -1200 Oe, and (iv) 300 Oe, as the marked positions in Fig. 4-5. 58
Fig. 4-6. Calculated hysteresis loops simulated for 500-nm-diameter and 40-nm-thickness NiFe disk with θ= 60°, 75° and 90° (a) 2×2 array. (b) 3×3 array ,and (c) magnetization configurations of simulated disk arrays at external fields of (i) 30 Oe, (ii) -90 Oe, (iii) -95 Oe, and (iv) -110 Oe, as the marked positions in Fig.4-6. 59
Fig. 4-7. The magnetization configurations of disk array and net external field caused by element interaction (a) vortex nucleation (b) vortex annihilation. 60
Fig. 4-8. (a) vortex nucleation and annihilation fields as functions of aspect ratio for 500 nm NiFe disk array (Experiment) (b) Dependence of SFD of vortex nucleation on aspect ratio. 62
Fig. 4-9. (a) Hysteresis loops of Py array withθ= 60° and constant Hy. (b) Calculated hysteresis loops simulated withθ= 60° and Hy. 64
Fig. 4-10. (a) Calculated hysteresis loops simulated for 500-nm-diameter and 40-nm-thickness NiFe disk with θ= 60° and Hy=200 Oe. (I) 1050 Oe (II) 70 Oe (b). The magnetization of disk array and net external field caused by Hy field. 65
Fig. 4-11(a). A schematic illustration of the decentered-ring. (b)-(f) Transition of the magnetic-moment distribution with decreasing external field obtained from a micromagnetic simulation using the OOMMF program. 68
Fig.4-12 Illustration of asymmetric ring 70
Fig. 4-13. Simulated hysteresis loop of an asymmetric Py ring for Do = 500 nm, d = 100 nm, S = 100 nm and its magnetic configurations. 71
Fig. 4-14. Descending branch of simulated hysteresis loops of an asymmetric Permalloy ring with Do = 500 nm, inner diameter d = 100 nm. 73
Fig. 4-15. Descending branch of simulated hysteresis loops of an asymmetric Permalloy ring with Do = 500 nm, inner diameter d = 150 nm. 73
Fig. 4-16. Descending branch of simulated hysteresis loops of asymmetric Permalloy ring with Do = 500 nm, inner diameter d = 200 nm. 75
Fig. 4-17. Descending branch of simulated hysteresis loops of an asymmetric Permalloy ring with Do = 500 nm, inner diameter d = 250 nm. 75
Fig. 4-18. Descending branch of simulated hysteresis loops of an asymmetric Permalloy ring with Do = 500 nm, inner diameter d = 300 nm. 76
Fig. 4-19. Analyzed vortex nucleation fields Hn and annihilation fields Han as functions of the asymmetric ratio for a Py ring of Do = 500 nm. 76
Fig. 4-20 Analyzed vortex annihilation field Han as a function of the asymmetric ratio for a Py ring of Do = 500 nm. 77
Fig. 4-21. Descending branch of simulated hysteresis loops of an asymmetric Permalloy ring with (a) Do = 300 nm, d = 50 nm, (b) Do = 300 nm, inner diameter d = 100 nm, (a) Do = 300 nm, d = 150 nm, (b) Do = 800 nm, inner diameter d = 150 nm, (a) Do = 800 nm, d = 200 nm, (b) Do = 800 nm, inner diameter d = 250 nm. 80
Fig. 4-22. Analyzed vortex nucleation fields Hn and annihilation fields Han as unctions of the asymmetric ratio for a Py ring of Do = 300 nm. 81
Fig. 4-23. Analyzed vortex nucleation fields Hn and annihilation fields Han as functions of the asymmetric ratio for a Py ring of Do = 800 nm. 81
Fig. 4-24. Dependences of the vortex nucleation field on the asymmetric ratio with different outer diameters Do. 82
Fig. 4-25. Descending branch of simulated hysteresis loops of an asymmetric Permalloy ring with Do = 300 nm, d = 150 nm, S = 50 nm. 84
Fig. 4-26. Dependences of the vortex nucleation fields on the asymmetric ratio with Do = 300 nm, different inner diameters and film thickness. 84
Fig. 4-27. (a) 300-150-50-5t M-H loop, (b) 1500 Oe, (c) 800 Oe, (d) 200 Oe, (e) 0 Oe, (f) -200 Oe, (g) -400 Oe, (h) -414 Oe, (i) -416 Oe, (j) -416 Oe, (k) -416 Oe, (l) -416 Oe, (m) -416 Oe, (n) -416 Oe, (o) -416 Oe, (p) -416 Oe, (q) -800 Oe, (r) -1500 Oe 85
Fig. 4-28. (a) 300-150-50-10t M-H loop, (b) 1500 Oe, (c) 460 Oe, (d) 350 Oe, (e) 210 Oe, (f) 188 Oe, (g) 186 Oe, (h) 100 Oe, (i) 72 Oe, (j) 0 Oe, (k) -200 Oe, (l) -368 Oe, (m) -370 Oe, (n) -400 Oe, (o) -576 Oe, (p) -578 Oe, (q) -1500 Oe 86
Fig. 4-29. (a) 300-150-50-20t M-H loop, (b) 1500 Oe, (c) 750 Oe, (d) 400 Oe, (e) 350 Oe, (f) 344 Oe, (g) 342 Oe, (h) -180 Oe, (i) -600 Oe, (j) -722 Oe, (k) -724 Oe, (l) -1300 Oe, (m) -1500 Oe 87
Fig. 4-30. (a) 300-150-50-40t M-H loop, (b) 1500 Oe, (c) 700 Oe, (d) 606 Oe, (e) 604 Oe, (f) -400 Oe, (g) -790 Oe, (h) -792 Oe, (i) -1000 Oe, (j) -1090 Oe, (k) -1100 Oe, (l) -1300 Oe, (m) -1500 Oe. 87
Fig. 4-31. Hysteresis loops simulated as a function of diameter and thickness of the Permalloy asymmetric ring. 89
Fig. 4-32 (a) 30-12-4.5-5t M-H loop, (b) 460 Oe, (c) 160 Oe, (d) 0 Oe, (e) -40 Oe, (f) -50 Oe, (g) -50 Oe, (h) -50 Oe, (i) -50 Oe, (j) -50 Oe, (k) -80 Oe, (l) -130 Oe, (m) -840 Oe. 90
Fig. 4-33 (a) 30-12-4.5-10t M-H loop, (b) 460 Oe, (c) 110 Oe, (d) 0 Oe, (e) -74 Oe, (f) -78 Oe, (g) -78 Oe, (h) -78 Oe, (i) -78 Oe, (j) -78 Oe, (k) -180 Oe, (l) -320 Oe, (m) -400 Oe. 91
Fig. 4-34 (a) 30-12-4.5-20t M-H loop, (b) 1300 Oe, (c) 300 Oe, (d) 220 Oe, (e) 180 Oe, (f) 40 Oe, (g) -400 Oe, (h) -904 Oe, (i) -904 Oe, (j) -904 Oe, (k) -904 Oe, (l) -904 Oe, (m)-1600 Oe. 92
Fig. 4-35 (a) 50-20-7.5-5t M-H loop, (b) 460 Oe, (c) 200 Oe, (d) 0 Oe, (e) -56Oe, (f) -58 Oe, (g) -58 Oe, (h) -58 Oe, (i) -58 Oe, (j) -58 Oe, (k) -58 Oe, (l) -160 Oe, (m) -600 Oe. 92
Fig. 4-36 (a) 50-20-7.5-10t M-H loop, (b) 3500 Oe, (c) 200 Oe, (d) -200 Oe, (e) -780 Oe, (f) -788 Oe, (g) -788 Oe, (h) --788 Oe, (i) -788 Oe, (j) -2862 Oe, (k) -2862 Oe, (l) -2862 Oe, (m) -2862 Oe. 93
Fig. 4-37 (a) 50-20-7.5-20t M-H loop, (b) 1000 Oe, (c) 300 Oe, (d) 264 Oe, (e) 264 Oe, (f) 264 Oe, (g) -600 Oe, (h) -2300 Oe, (i) -2326 Oe, (j) -2326 Oe, (k) -2326 Oe, (l) -2326 Oe, (m) -2840 Oe. 93
Fig. 4-38 (a) 80-32-12-5t M-H loop, (b) 600 Oe, (c) 0 Oe, (d) -200 Oe, (e) -400 Oe, (f) -560 Oe, (g) -780 Oe, (h) -1200 Oe, (i) -1968 Oe, (j) -1968 Oe, (k) -1968 Oe, (l) -1968 Oe, (m) -1968 Oe. 94
Fig. 4-39 (a) 80-32-12-10t M-H loop, (b) 600 Oe, (c) 0 Oe, (d) -300 Oe, (e) -414 Oe, (f) -414 Oe, (g) -414 Oe, (h) -2170 Oe, (i) -2178 Oe, (j) -2178 Oe, (k) -2178 Oe, (l) -2178 Oe, (m) -2178 Oe. 94
Fig. 4-40 (a) 80-32-12-10t M-H loop, (b) 2000 Oe, (c) 410 Oe, (d) 410 Oe, (e) 410 Oe, (f) 410 Oe, (g) -2000 Oe, (h) -2002Oe, (i) -2002 Oe e, (j) -2002 Oe , (k) -2002 Oe, (l) -2002 Oe, (m) -2002 Oe. 95
Fig. 4-41 (a) 100-40-15-5t M-H loop, (b) 1300 Oe, (c) 100 Oe, (d) -120 Oe, (e) -400 Oe, (f) -600 Oe, (g) -1100 Oe, (h) -1474 Oe, (i) -1474 Oe, (j) -1474 Oe, (k) -1474 Oe, (l) -1474 Oe, (m) -1474 Oe. 95
Fig. 4-42 (a) 100-40-15-10t M-H loop, (b) 1300 Oe, (c) 0 Oe, (d) -200 Oe, (e) -640 Oe, (f) -680 Oe, (g) -680 Oe, (h) -680 Oe, (i) -1864 Oe, (j) -1864 Oe, (k) -1864 Oe, (l) -1864 Oe, (m) -1864 Oe. 96
Fig. 4-43 (a) 100-40-15-20t M-H loop, (b) 1000 Oe, (c) 300 Oe, (d) 206 Oe, (e) 206 Oe, (f) 206 Oe, (g) -1100 Oe, (h) -1700 Oe, (i) -1724 Oe, (j) -1724 Oe, (k) -1724 Oe, (l) -1724 Oe, (m) -1724 Oe. 96
Fig. 4-44. (a) Geometry of the asymmetric ring. SEM images of asymmetric Py rings with Do = 1000 nm, d = 500 nm, a thickness of 20 nm, and (b) the shift length, S = 0 nm. (c) the shift length, S = 50 nm. (d) the shift length, S = 100 nm. (e) the shift length, S = 150 nm. (f) the shift length, S = 200 nm. 97
Fig. 4-45. The simulated and experimental hysteresis loops of asymmetric Permalloy ring with with Do = 1000 nm, d = 500 nm, a thickness of 20 nm, and (a) the shift length, S = 50 nm, (b) the shift length, S = 100 nm, (c) the shift length, S = 150 nm, (d) the shift length, S = 200 nm 98
Fig. 4-46. Dependences of the Hn and Han on the shift length, the Hn and Han analyzed from the MOKE and simulated hysteresis loops of the asymmetric Permalloy ring with Do = 1000 nm, d = 500 nm, a thickness of 20 nm, respectively. 99
Fig. 4-47 (a) Geometry of the asymmetric ring. SEM images of asymmetric Py rings with Do = 1000 nm, d = 300 nm, a thickness of 20 nm, and (b) the shift length, S = 100 nm. (c) the shift length, S = 150 nm. (d) the shift length, S = 200 nm. 100
Fig. 4-48. The simulated and experimental hysteresis loops of asymmetric Permalloy ring with with Do = 1000 nm, d = 300 nm, a thickness of 20 nm, and (a) the shift length, S = 100 nm, (b) the shift length, S = 150 nm, (c) the shift length, S = 200 nm. (d) Dependences of the Hn and Han on the shift length, the Hn and Han analyzed from the MOKE and simulated hysteresis loops of the asymmetric Permalloy ring with Do = 1000 nm, d = 300 nm, a thickness of 20 nm, respectively. 101
Fig. 4-49. Dependences of hysteresis loop and demagnetization energy density of an asymmetric Permalloy ring with Do = 500 nm, d = 200 nm, S = 50 nm, and t = 20 nm and its corresponding spin configurations. 104
Fig. 4-50. Dependence of demagnetization energy density on magnetic field of an asymmetric Permalloy ring with with Do = 300 nm, d = 150 nm, t = 20 nm and different S. 106
Fig. 4-51. Dependence of demagnetization energy density on magnetic field of an asymmetric Permalloy ring with with Do = 300 nm, d = 50 nm, t = 20 nm and different S. 106

[1] T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, and T. Ono, Science, 289, 930 (2000).
[2] R. P. Cowburn, D. K. Koltsov, A. O. Adeyeye, M. E. Welland, and D.M. Tricker, Phys. Rev. Lett., 83, 1042 (1999).
[3] H. Hoffmann and F. Steinbauer, J. Appl. Phys., vol. 92, 5463 (2002).
[4] C. Miramond, C. Fermon, F. Rousseaux, D. Decanini, and F. Carcenac, J. Magn. Magn. Mater., vol. 165, 500 (1997).
[5] N. Dao, S. L. Whittenburg, and R. P. Cowburn, J. Appl. Phys., 90, 5235 (2001).
[6] C. A. Ross, M. Hwang, M. Shima, J. Y. Cheng, M. Farhoud, T. A. Savas, H. I. Smith, W. Schwarzacher, F. M. Ross, M. Redjdal, and F. B. Humphrey, Phys. Rev. B, 65, 144417 (2002).
[7] M. Schneider, H. Hoffmann, and J. Zweck, Appl. Phys. Lett. 79, 3113 (2001).
[8] J. Rothman, M. Kläui, L. Lopez-Diaz, C. A. F. Vaz, A. Bleloch, J. A. C. Bland, Z. Cui, and R. Speaks, Phys. Rev. Lett. 86, 1098 (2001).
[9] P. Vavassori, M. Grimsditch, V. Novosad, V. Metlushko, and B. Ilic, Phys. Rev. B 67, 134429 (2003).
[10] E. Saitoh, M. Kawabata, K. Harii, H. Miyajima, and T. Yamaoka, J. Appl. Phys. 95, 1986 (2004).
[11] C. H. Huang, K. M. Wu, C. Y. Wang, J. C. Wu, and L. Horng, J. Appl. Phys. 109, 07B913 (2011).
[12] F. Q. Zhu, G. W. Chern, O. Tchernyshyov, X. C. Zhu, J. G. Zhu, and C. L. Chien, Phys. Rev. Lett. 96, 027205 (2006).
[13] X. H. Wang, W. K. Peng, and W. S. Lew, J. Appl. Phys, 106, 043905 (2009).
[14] X. H. Wang, S. Goolaup, and W. S. Lew, Appl. Phys. Lett. 97, 142504 (2010).
[15] Étienne du Trémolet de Lacheisserie, Damien Gignoux, Michel Schlenker, “Magnetism I- Fundamentals” Kluwer Academic Publisher, (2002).
[16] Charles Kittel, “Introduction to Solid State Physics 7th” Wiley, (1996).
[17] A. Hubert, R. Schäfer, “Magnetic Domain: The Analysis of Magnetic Mircostructures” Springer, (1998).
[18] Étienne du Trémolet de Lacheisserie, Damien Gignoux, Michel Schlenker, “Magnetism I- Fundamentals” Kluwer Academic Publisher, (2002).
[19] R. P. Hunt, J. Appl. Phys,. 38, 1652 (1967)
[20] J. Zak, E. R. Moog, C. Liu, and S. D. Bader, J. Appl. Phys. 68, 4203 (1990)
[21] Y. J. Yang and M. R. Scheinfein, J. Appl. Phys. 74, 6810 (1993)
[22] http://math.nist.gov/oommf
[23] OOMMF User Guide.
[24] Rai-Choudury, P. “Handbook of Microlithography, and Microfabrication” Spie Optical Engineering Press, 1994.
[25] Thompson, Larry; Wilson, Grant; Bowden, Murrae; “Introduction to Microlithography,” Second Edition, 1994.
[26] Campbell, Stephen. “The Science and engineering of Microelectronics Fabrication,” Oxford University Press 1996.
[27] P. R. Thornton, “Electron Physics in Device Microfabrication -I General Background and Scanning Systems”, Adv. Electron. Electron Phys. 48, 271 (1979)
[28] M. Natali, I. L. Prejbeanu, A. Lebib, L. D. Buda, K. Ounadjela, and Y. Chen, Phys. Rev. Lett. 88, 157203 (2002)
[29] C. A. Ross, F, J, Castano, D. Morecroft, W. Jung, H. I. Smith, T. A. Moore, T. J. Hayward, J. A. C. Bland, T. J. Bromwich, and A. K. Petford-Long, J. Appl. Phys. 99, 08S501 (2006)
[30] T. J. Bromwich, A. K. Petford-Long, F. J. Castano, and C. A. Ross, J. Appl. Phys. 99, 08H304 (2006)
[31] K. Y. Guslienko, V. Novosad, Y. Otani, H. Shima, and K. ukamichi, Phys. Rev. B, 65, 024414 (2001)
[32] M. Kläui, J. Rothman, L. Lopez-Diaz, C. A. F. Vaz, J. A. C. Bland et al., Appl. Phys. Lett. 78, 3268 (2001)
[33] M. Kläui, J. Phys.: Condens. Matter, 20, 313001 (2008).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top