跳到主要內容

臺灣博碩士論文加值系統

(44.222.189.51) 您好!臺灣時間:2024/05/18 17:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃政堯
研究生(外文):Jheng-Yao Huang
論文名稱:探討吳郭魚鰓與肝組織肝醣代謝轉移效率與鹽度環境適應能力之關係
論文名稱(外文):Relationship Between the Efficiency of Glycogen Metabolism and Resistance of Salinity Change in Gills and Hepatic Tissues of Tilapia (Oreochromis mossambicus)
指導教授:吳淑美吳淑美引用關係
指導教授(外文):Su-Mei Wu
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:水生生物科學系研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
畢業學年度:101
語文別:中文
論文頁數:61
中文關鍵詞:吳郭魚鹽度緊迫肝醣磷酸化酶前適應
外文關鍵詞:tilapiasalinity stressglycogen phosphorylasepreadaptation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:387
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
魚體在環境鹽度變化時會造成生理恆定失衡及使體內蛋白質酵素及血液生理功能的改變,而在調節適應的過程中需消耗大量能量,因此本研究之目標是探討魚體如何在細胞因鹽度緊迫死亡前,將儲存的營養物代謝轉換成能量以供調節緊迫之需求的生理反應。本篇以鰓及肝臟作為主要探討的目標器官。本篇分為四組處理包括:先經過半淡鹹水(20 ‰)前適應一及二天再行轉移到28 ‰海水(分別以BW1d-SW;BW2d-SW表示);直接轉移到20 ‰之半淡鹹水組(FW-BW);與直接轉移至28 ‰海水的海水組(FW-SW)。而本篇結果發現經前適應兩天後,其鰓及肝臟肝醣磷酸化酶(Glycogen Phosphorylase ; GP)活性在轉移後一小時內與直接相比有所減少,但鰓上肝醣含量及血清中葡萄糖含量都明顯增加。此外,有經前適應組其滲透壓雖也隨鹽度適應而升高,但其回復的速度較快。而在離子調節部份,直接轉移組血漿中離子含量會隨時間提高。經前適應組在一小時內便升到最高點,之後便隨時間回復。而本論文也發現GP活性的變化有潛力成為魚類之鹽度緊迫有效之指標。
The objective of this study is to explore the energy metablism of tilapia (Oreochromis mossambicus) upon acute salinity exposure. This study is divided into four groups of treatment include: first through brackish water (20 ‰) adapt one or two days and then transferred to 28 ‰ seawater (respectively to BW1d-SW; BW2d-SW representation); transferred directly to 20 ‰ brackish water group (FW-BW); transferred directly to the group of 28 ‰ seawater seawater (FW-SW). And we are focus on the gills and hepatic tissues. Results showed that the glycogen phosphorylase (GP) activity was significantly increased at 1 hour after acute salinity exposure. Furthermore, in the preadaptation group, although its osmolality increased with salinity adaptation, but it eventually recovered to the normal level soon. In the ion regulation section, the plasma ion content elevated over time in direct transfer group. But, in preadaptation group it rose to the highest point within 1 hour and reply with time. Finally, we found the GP activity changes have the potential to become an effective indicator of salinity stress.
目次
中文摘要…………………………………………………………………1
英文摘要…………………………………………………………………2
前言………………………………………………………………………3
一、魚類面臨緊迫的生理應對機制…………………………………..3
二、緊迫過程中的能量代謝……………………………………………4
三、鹽度變化對魚類生理之影響………………………………………6
四、魚類在鹽度緊迫適應程度上的差別………………………………8
論文研究目標……………………………………………………………9
材料與方法………………………………………………….…………12
一、實驗動物……………………………………………………………12
二、研究方法……………………………………………………………12
1. 海水的配置……………………………………………………12
2. 鰓上皮細胞的分離……………………………………………12
3. GP活性分析……………………………………………………13
4. 肝醣萃取與定量分析…………………………………………14
5. 血液分析………………………………………………………15
6. 血液滲透壓測量………………………………………………15
7. 蛋白質萃取……………………………………………………15
8. Western blotting 西方墨點法……………………………16
三、實驗設計……………………………………………………………17
1. 環境鹽度適應過程之血液生理反應…………………………17
2. 環境鹽度適應過程比較魚類鰓與肝組織之肝醣代謝………18
3. 環境鹽度適應過程比較魚類鰓Na+ - K+ ATPase酵素蛋白的變化.18
四、統計方法……………………………………………………………19
結果…………………………………………………………………..…20
一、環境鹽度變化對吳郭魚血漿滲透壓之影響………………………20
二、鹽度變化對吳郭魚鰓與肝臟肝醣磷酸化酶與肝醣含量之影響…20
三、鹽度變化對吳郭魚血液中葡萄糖與乳酸濃度之影響……………21
四、鹽度變化對吳郭魚血液中K+、Na+、Ca2+、Cl-含量之影響....22
五、鹽度變化對吳郭魚鰓上Na+ - K+ ATPase蛋白質表現量之影響23
討論……………………………………………………………..………24
結論………………………………………………………..……………31
參考文獻………………………………………………………………..33
圖………………………………………………………………………..44
藥品配製………………………………………………………………..56

吉中禮二,佐藤守 1989,水產化學實驗法,日本東京恆星社厚生閣,p89-90
李龍雄,曾文陽 2006,水產養殖學,前程出版社。
林昱翔 2009 探討急性鎘暴露初期吳郭魚肝醣代謝之機制。國立嘉義大學生產生物學系碩士論文。
王上知 2010 吳郭魚適應不同環境鹽度時鰓上的滲透壓調節機制及其離子調節細胞功能之探討。國立中興大學生命科學系碩士論文。
郭源軒 2010 海水轉移對耐鹽性不同吳郭魚鰓上基因表現之影響。國立台灣大學生命科學院動物研究所碩士論文。
Barton, B. A., Iwata, G. K., 1991. Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annual Review of Fish Diseases 1, 3-26.
Barton, B. A., 2002. Stress in fishes: A diversity of responses with particular reference to changes in circulating corticosteroids. Integrative and Comparative Biology. 42, 517-525.
Bijvelds, M. J. C., Kolar, Z., Wendelaar Bonga, S., Flik, G., 1997. Mg2+ transport in plasma membrane vesicles of renal epithelium of the Mozambique tilapia (Oreochromis mossambicus).The Journal of Experimental Biology 200, 1931-1939.
Brown, J. A., Tytler, P., 1993. Hypoosmoregulation of larvae of the turbot, Scophthalmus maximus, drinking and gut function in relation to environmental salinity. Fish Physiology and Biochemistry 10, 475-483.
Chesley, A., Howlett, R. A., Heigenhauser, G. J. F., Hultman, E., Spriet, L. L., 1998. Regulation of muscle glycogenolytic flux during intense aerobic exercise after caffeine ingestion. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology 275, 596-603.
Chang, J. C. H., Wu, S. M., Tseng, Y. C., Lee, Y. C., Baba, O., Hwang, P. P., 2007. Regulation of glycogen metabolism in gills and liver of the euryhaline tilapia (Oreochromis mossambicus) during acclimation to seawater. The Journal of Experimental Biology 210, 3494-3504.
Choi, I. Y., Seaquist, E. R., Gruetter, R., 2003. Effect of Hypoglycemia on Brain Glycogen Metabolism In Vivo. Journal of Neuroscience Research 72, 25-32.
Evan, D. H., Piermarini, P. M. and Choe, K. P., 2005. The multifunctional fish gill : dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiological Reviews 85, 97-177.
Freire, C. A., Amado, E. M., Souza, L. R., Veiga, M. P., Vitule, J. R., Souza, M. M. And Prodocimo, V., 2008. Muscle water control in crustaceans and fishes as a function of habitat, osmoregulatory capacity, and degree of euryhalinity. Comparative Biochemistry and Physiology, Part A 149, 435-446.
Gonzalez, R. J., Mcdonald, D. G., 1992. The relationship between oxgen consumption and ion loss in a freshwater fish. Journal of Experimental Biology 163, 317-332.
Hiroi, J., Yasumasu, S., McCormick, S. D., Hwang, P. P., Kaneko, T., 2008. Evidence for an apical Na-Cl cotransporter involved in ion uptake in a teleost fish. The Journal of Experimental Biology 211, 2584-2599.
Hwang, P. P., 1987. Tolerance and ultrastructural responses of branchial chloridecells to salinity changes in the euryhaline teleost Oreochromis mossambicus. Marine Biology 94, 643-649.
Hwang, P. P. and Lee, T. H., 2007. New insights into fish ion regulation and mitochondrion-rich cells. Comparative Biochemistry and Physiology, Part A 148, 479-497.
Hwang, P. P. and Wu, S. M., 1987. Salinity effects on cytometrical parameters of the kidney in the euryhaline teleost Oreochromis mossambicus Peters. Journal of Fish Biology 33, 89-95.
Hwang, P. P., Sun, C. M., Wu, S. M., 1989. Changes of plasma osmolality, chloride concentration and gill Na-K-ATPase activity in tilapia Oreochromis mossambicus during seawater acclimation. Marine Biology 100, 295-299.
Inokuchi, M., Kaneko, T., 2012. Recruitment and degeneration of mitochondrion-rich cells in the gills of Mozambique tilapia Oreochromis mossambicus during adaptation to a hyperosmotic environment. Comparative Biochemistry and Physiology, Part A 162, 245-251.
Kammerer, B. D., Cech Jr, J. J., Kültz, D., 2010. Rapid changes in plasma cortisol, osmolality, and respiration in response to salinity stress in tilapia (Oreochromis mossambicus). Comparative Biochemistry and Physiology, Part A 57, 260-265.
Kaneko, T., Watanabe, S. and Lee, K. M., 2008. Functional morphology of mitochondrion-rich cells in euryhaline and stenohaline teleosts. Aqua-bioscience Monographs 1, 1-62.
Kang, C. K., Tsai, S. C., Lee, T. H., Hwang, P. P., 2008. Differential expression of branchial Na+/K+-ATPase of two medaka species, Oryzias latipes and Oryzias dancena, with different salinity tolerances acclimated to fresh water, brackish water and seawater. Comparative Biochemistry and Physiology Part A 151, 566-575.
Kato, A., Doi, H., Nakada, T., Sakai, H. and Hirose, S., 2005. Takifugu obscurus is a euryhaline fugu species very close to Takifugu rubripes and suitable for studying osmoregulation. BioMed Central Physiology 5, 18.
Laiz-Carrión, R., Guerreiro, P. M., Fuentes, J., Canario, A. V. M., Martín Del Río, M. P., Mancera, J. M., 2005. Branchial osmoregulatory response to salinity in the gilthead sea bream, Sparus auratus. Journal of experimental zoology 303A, 563-576.
Lee, T. H., Feng, S. H., Lin, C. H., Hwang, Y. H., Huang, C. L., Hwang, P. P., 2003. Ambient salinity modulates the expression of sodium pumps in branchial mitochondria-rich cells of Mozambique tilapia, Oreochromis mossambicus. Zoological science 20, 29-36.
Lin, C. H., Huang, C. L., Yang, C. H., Lee, T. H., Hwang, P. P., 2004.
Time-course changes in the expression of Na, K-ATPase and the morphometry of mitochondrion-rich cells in gills of euryhaline tilapia (Oreochromis mossambicus) during freshwater acclimation. Journal of experimental zoology 301, 85-96.
Lin, Y. M., Chen, C. N., Lee, T. H., 2003. The expression of gill Na, K-ATPase in milkfish, Chanos chanos, acclimated to seawater, brackish water and fresh water. Comparative Biochemistry and Physiology Part A 135, 489-497.
Lin, Y. M., Chen, C. N., Yoshinaga, T., Tsai, S. C., Shen, I. D., Lee, T. H., 2006. Short-term effects of hyposmotic shock on Na+/K+-ATPase expression in gills of the euryhaline milkfish, Chanos chanos. Comparative Biochemistry and Physiology Part A 143, 406-415.
Lin, Y. S., Tsai, S. C., Lin, H. C., Hsiao, C. D., Wu, S. M., 2011. Changes of glycogen metabolism in the gills and hepatic tissue of tilapia(Oreochromis mossambicus) during short-term Cd exposure. Comparative Biochemistry and Physiology Part C 154, 296-304.
Mancera, J. M. and McCormick, S. D., 2000. Rapid activation of gill Na+,K+-ATPase in the euryhaline teleost Fundulus heteroclitus. Journal of experimental zoology 287, 263-274.
Marshall, W. S., 2002. Na(+), Cl(-), Ca(2+) and Zn(2+) transport by fish gills: retrospective review and prospective synthesis. Journal of experimental zoology 293, 264-283.
McGuire, A., Aluru, N., Takemura, A., Weil, R., Wilson, JM., Vija -yan , MM., 2010. Hyperosmotic shock adaptation by cortisol involves upregulation of branchial osmotic stress transcription factor 1 gene expression in Mozambique Tilapia. General and Comparative Endocrinology 165, 321-329.
Perry, S. F., Reid, S. D., 1992. The relationship between beta- adrenoceptors and adrenergic responsiveness in trout (Oncorhynchus mykiss) and eel (Anguilla rostrata) erythrocytes. Journal of Experimental Biology. 167, 235-250.
Pickering, A. D., 1990. Stress and the suppression of somatic growth in teleosts fish. In: Prasad MRN (ediors) Progress in comparative endocrinology. Wiley, New York, 112-134.
Richards, J. G., Heigenhauser, G. J. F., Wood, C.M., 2002. Glycogen phosphorylase and pyruvate dehydrogenase transformation in white muscle of trout during high-intensity exercise. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology 282, 828–836.
Sangiao-Alvarellos, S., Arjona, F. J., Martin del Rio, M. P., Miguez, J. M., Mancera, J. M., Soengas, J. L., 2005. Time course of osmo- regulatory and metabolic changes during osmotic acclimation in Sparus auratus. The Journal of Experimental Biology 208, 4291-4304.
Sardella, B. A., Matey, V., Cooper, J., Gonzalez, R. J., Brauner, C. J., 2004. Physiological, biochemical and morphological indicators of osmoregulatory stress in ‘California’ Mozambique tilapia (Oreochromis mossambicus × O. urolepis hornorum) exposed to hypersaline water. The Journal of Experimental Biology 207, 1399-1413.
Soengas, J.L., Sangiao-Alvarellos, S., Láiz-Carrión, R., Mancera, J.M., 2007. Energy metabolism and osmotic acclimation in teleost fish. In: Baldisserotto, B., Mancera, J.M., Kapoor, B.G. (editors), Fish Osmoregulation Chapter 10, 277–308.
Tomy, S., Chang, Y. M., Chen, Y. H., Cao, J. C., Wang, T. P., Chang, C. F., 2009. Salinity effects on the expression of osmoregulatory genes in the euryhaline black porgy Acanthopagrus schlegeli. General and Comparative Endocrinology 161, 123-132.
Tseng, Y. C., Huang, C. J., Chang, J. C., Teng, W. Y., Baba, O., Fann, M. J., Hwang P. P., 2007. Glycogen phosphorylase in glycogen-rich cells is involved in the energy supply for ion regulation in fish gill epithelia. American journal of physiology. Regulatory, integrative and comparative physiology 293, 482-491.
Tseng, Y. C., Hwang, P. P., 2008. Some insights into energy metabolism for osmoregulation in fish. Comparative Biochemistry and Physiology, Part C 148, 419-429.
Vargas-Chacoff L., Arjona F.J., Polakof S., del Río M.P., Soengas J.L., Mancera J.M., 2009. Interactive effects of environmental salinity and temperature on metabolic responses of gilthead sea bream Sparus aurata. Comparative Biochemistry and Physiology, Part A 154, 417-424.
Velan, A., Hulata, G., Ron, M., Cnaani, Avner., 2011. Comparative time-course study on pituitary and branchial response to salinity challenge in Mozambique tilapia (Oreochromis mossambicus) and Nile tilapia (O. niloticus). Fish Physiology Biochemistry 37, 863-873.
Wang, P. J., Lin, C. H., Hwang, L. Y., Huang, C. L., Lee, T. H., Hwang, P. P., 2009. Differential responses in gills of euryhaline tilapia, Oreochromis mossambicus, to various hyperosmotic shocks. Comparative Biochemistry and Physiology, Part A 152, 544-551.
Wilson, R. W., Grosell, M., 2003. Intestinal bicarbonate secretion in marine teleost fish source of bicarbonate, pH sensitivity, and consequences for whole animal acid-base and calcium homeostasis. Biochimica et Biophysica Acta 1618, 163- 174.
Wilson, R. W., Gilmour, K., Henry, R. P., Wood, C. M., 1996. Intestinal base excretion in the seawater-adapted rainbow trout: a role in acid-base balance? The Journal of Experimental Biology 199, 2331-2343.
Wilson, R. W., Wilson, J. M., Grosell, M., 2002. Intestinal bicarbonate secretion by marine teleost fish-why and how? Biochimica et Biophysica Acta 1566, 182-193.
Yang, W. K., Kang, C. K., Chen, T. Y., Chang, W. B., Lee, T. H., 2011. Salinity-dependent expression of the branchial Na+/K+/2Cl2 cotransporter and Na+/K+-ATPase in the sailfin molly correlates with hypoosmoregulatory endurance. Journal of Comparative Physiology B 181, 953-964.
Yang, W. K., Hseu, J. R., Tang, C. H., Chung, M. J., Wu, S. M., Lee, T. H., 2009. Na+/K+-ATPase expression in gills of the euryhaline sailfin molly, Poecilia latipinna, is altered in response to salinity challenge. Journal of Experimental Marine Biology and Ecology 375, 41-50.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊