跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/12 10:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡八澍
研究生(外文):Bashu Tsai
論文名稱:發展彈性動作協調控制於動作追蹤與平衡調整之研究
論文名稱(外文):The Design of a Flexible Motion Coordination Control between Tracking and Balance
指導教授:盧天麒盧天麒引用關係
指導教授(外文):Tainchi Lu
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:資訊工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:101
語文別:中文
論文頁數:62
中文關鍵詞:角色動畫正向動力學模擬動作追蹤PD控制器平衡控制
相關次數:
  • 被引用被引用:0
  • 點閱點閱:133
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:1
隨著電腦圖學技術的快速發展,越來越多彈性以及動作自然度極高的虛擬角色動作在遊戲以及動畫這些領域出現。本研究從來源檔案中擷取虛擬角色的骨架與動作資訊,利用開放動態物理引擎(Open Dynamics Engine)中的函式功能建置骨架中包含物理屬性的虛擬角色,其目的藉由物理引擎來調整動作資料庫的動作,使動作能夠順暢且具合理地在新的環境中執行。本研究使用PD控制器(Proportional-Derivative controller)追蹤來源檔案中的角色動作。PD控制器的作用是使虛擬角色所模擬的動作接近來源檔案中的角色動作。計算方式是將當前虛擬角色與來源檔案的角色對其關節角度與關節速度值做比較,接著計算虛擬角色追蹤來源檔案動作的力矩。除了考慮參數上的設定之外,平衡性也是考量的重要因素,傳統上的平衡大部分採用零力矩點(zero- moment point)的運算,而本研究透過髖關節以及骨盆等控制質心,並利用腳踝的關節部分傳輸地面接觸力來進行力矩的修正。虛擬角色受外力干擾的情形,本研究會將平衡與動作追蹤控制的部分做三個部份的探討,這方面不同於直接從動作資料庫中取得動作的方法,實驗中會藉由參數上的調整來產生較為自然的動作。
With the rapid growth of computer graphics, plausible and natural motions of animating 3D characters are more desirable when we accomplish computer games and animations. The up-to-date approach is to apply physically based methods to control and simulate character motions. In this paper, we take advantage of both motion tracking and balance control techniques to allow a bipedal character to react to different disturbances by the proposed motion coordination control. In the first step, we apply Open Dynamics Engine to be served as the physics engine for creating a 3D character with fully physical parameters in terms of a few reference motions. The next step is to employ Proportional-Derivative controller to follow a particular reference motion as closely as possible. Besides, we take the standing balance control into account to let the character adapt to external forces and ground contacts. In the case of suffering from slight perturbations, it is a trade-off problem in which we simultaneously make use of the motion tracking and balance control. We devise a motion coordination control to solve the above problem and try to apply more joint torque to adjust character motions accordingly. In the experiments, we test different extents of external forces to demonstrate the effectiveness of the three major balancing modes, including basic, hold, and stagger. The results show that the reactive motion of the character is robust and intuitive while pushing and pulling under the acceptable conditions.
目錄
中文摘要 i
Abstract ii
目錄 iv
表目錄 v
圖目錄 vii
第一章、 緒論(Introduction) 1
1.1 研究動機 1
1.2 研究方法 2
1.3 章節安排 3
第二章、相關工作(Related Works) 4
2.1平衡控制 5
2.2二足控制器 6
2.3資料驅動 7
2.4機器人學的延伸 9
第三章、系統架構與角色狀態同步化(System Structure and Character State Synchronization) 11
3.1 虛擬角色設定步驟 11
3.2 系統架構 13
3.3基本狀態判斷 14
3.4受力狀態判斷 16
3.5動作切換狀態判斷 18
第四章、動作追蹤與平衡控制(Motion Tracking and Balance Control) 19
4.1 動作追蹤 19
4.2 平衡架構設計 22
4.3 動作回饋調整 24
4.3.1 跨步機制 25
4.3.2 例外處理 27
第五章、動作協調控制(Motion Coordination Control) 29
5.1 動態來源參數調整 30
5.2 三階段受力判斷 31
第六章、實驗結果 (Experimental Results) 34
6.1 虛擬角色基本設定 35
6.2 虛擬角色模擬來源動作 39
6.3 虛擬角色受力結果 40
第七章、結論與未來方向 (Conclusions and Future Work) 45
參考文獻 47
Yin, K., Loken, K., and Vandepanne, M. SIMBICON: simple biped locomotion control. ACM Transactions on Graphics, Vol.26 , No.105, 2007.
Vukobratovic, M., and Juricic, D. Contribution to the synthesis of biped gait. In IEEE Transactions on Biomedical Engineering, Vol.16, pp.1–6, 1969.
Goswami, A., and Kallem, V. Rate of change of angular momentum and balance maintenance of biped robots. IEEE Int. Conf. Robotics and Automation, 2004.
Kudoh, S., Komura, T., and Ikeuchi, K. Stepping motion for a humanlike character to maintain balance against large perturbations. In IEEE Int. Conf. Robotics and Automation, 2006.
Abe, Y., da Silva, M., and Popović, J. Multiobjective control with frictional contacts. ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp.249-258, 2007.
Jain, S., Ye, Y., and Liu, C. K. Optimization-based interactive motion synthesis. ACM Transactions on Graphics, Vol.28, No.1, 2009.
Komura, T., Leung, H., and Kuffner, J. Animating reactive motions for biped locomotion. In ACM symposium on Virtual Reality Software and Technology, 2004.
Macchietto, A., Zordan, V., and Shelton, C. R. Momentum control for balance. ACM Trans. Graph, Vol.28,No. 80, 2009.
Ye, Y., Liu, C. K. Optimal feedback control for character animation using an abstract model. ACM Transactions on Graphics, Vol. 29, 2010.
Liu, C. K., Hertzmann, A., and Popović, Z. Learning physics-based motion style with nonlinear inverse optimization. ACM Transactions on Graphics, Vol.24, No. 3 , 1071–1081, 2005.
Rose, C., Guenter, B., Bodenheimer, B., and Cohen, M. F. Efficient generation of motion transitions using spacetime constraints. In Proceedings of SIGGRAPH 96, ACM, Computer Graphics Proceedings, Annual Conference Series, pp.147–154, 1996.
Safonova, A., Hodgins, J. K., and Pollard, N. S. Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. ACM Transactions on Graphics, Vol. 23, pp. 514–521, 2004.
Levine, S., Lee, Y., Koltun, V., and Popović, Z. 2011. Space-time planning with parameterized locomotion controllers. ACM Transactions on Graphics, Vol.30, No. 23.
Muico, U., Lee, Y., Popovic´, J., and Popović, Z. Contact-aware nonlinear control of dynamic characters. ACM Transactions on Graphics, Vol. 28, No.81, 2009.
Wu, J., and Popović, Z. Terrain-adaptive bipedal locomotion control, ACM Trans. Graph, Vol. 29, No.72, 2010.
Wei, X., Min J., and, Chai, J. X. Physically-valid statistical motion models for human motion generation. ACM Transactions on Graphics, Vol.30, No. 19, 2011.
Wang, J., Fleet, D. J., and Hertzmann, A. Optimizing walking controllers. ACM Transactions on Graphics Vol.28, 2009.
Yin, K., Coros, S., Beaudoin, P., and Vandepanne, M. Continuation methods for adapting simulated skills. ACM Transactions on Graphics, Vol.27, 2008.
Vondark, M., Sigal, L., Hodgins. J. , and Jenkins, O. Brown University. Video-based 3D motion capture through biped control. ACM Transactions on Graphics, Vol. 31, No. 27, 2012.
Brown, DF., Macchietto, A., Yin, K., and Zordan, V. Control of Rotational Dynamics for Ground Behaviors, ACM/Eurographics Symposium on Computer Animation 2013.
Arikan, O., and Forsyth, D. A. Interactive motion generation from examples. ACM Transactions on Graphics, Vol. 21, pp.483–490, 2002.
Sok, K. W., Kim, M., and Lee, J. Simulating biped behaviors from human motion data. ACM Transactions on Graphics, Vol.26, No. 107, 2007.
Yin, K., Pai, D. K., and van de Panne, M. Data-driven interactive balancing behaviors. In Pacific Graphics, 2005.
Jo ̈rg, S., Hodgins, J., and Safonova, A. Data-driven finger motion synthesis for gesturing characters. ACM Transactions on Graphics , Vol.31, No. 189, 2012.
Lee, Y., Wampler, K., Bernstein, G., Popović, J., and Popovic´ , Z. Motion fields for interactive character locomotion. ACM Transctions on Graphics, Vol.29, NO. 138, 2010.
Levine, S., Wang, J.-M., Haraux, A., and Popović, Z., and Koltun, V. Continuous character control with low-dimensional embeddings. ACM Transactions on Graphics , Vol. 31, No. 28, 2012.
Liu, L., Yin, K., van de Panne, M., Shao,T., and Xu, W. Sampling – based Contact -rich Motion Control. ACM Transaction on Graphics, Vol. 29, No.128, 2010.
Liu L., Yin, K., van de Panne, M., and Guo, B. Terrain Runner: Control, parameterization, composition, and planning for highly dynamic motions. ACM Transactions on Graphics, Vol.31, No. 154, 2012.
Zordan, V., B., Majkowska, A., Chiu, B., Fast, M. Dynamic response for motion capture animation. In ACM SIGGRAPH, pp. 697–701,2005.
Zordan, V., B., Majkowska, A., Medina, J., Soriano, M., C-C, WU. Interactive dynamic response for games, In ACM SIGGRAPH symposium on Video games , pp. 9–14,2007.
Morimoto, J., Zeglin, G., and Atkeson, C. Minimax differential dynamic programming: Application to a biped walking robot. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003.
Nakaoka, S., Nakazawa, A., and Yokoi, K. Generating whole body motions for a biped humanoid robot from captured human dances. In Proceedings of the IEEE International Conference on Robotics and Automation, pp.3905–3910, 2003.
Tsianos, K. I., Sucan, I. A., and Kavraki, L. E. Sampling-based robot motion planning: Towards realistic applications. Computer Science Review, Vol. 1, pp.2–11, 2007.
Murai, A., and Yamane, K. A neuromuscular locomotion controller that realizes human-like responses to unexpected disturbances. In Proc. International Conference on Robotics and Automation, IEEE, pp.1997–2002, 2011.
Coros, S., Beaudoin, P., and van de Panne, M. Robust task-based control policies for physics-based characters. ACM Transactions on Graphics, Vol. 28, No. 170, 2009.
Coros, S., Karpathy, A., Jones, B., Reveret, L., and van de Panne, M. Locomotion skills for simulated quadrupeds. ACM Transactions on Graphics, Vol. 30, No. 59,2011.
Kajita, S., Kanehiro, F., Kaneko, K., Yokoi, K., and Hirukawa, H. The 3d linear inverted pendulum mode: A simple modeling for a bipedwalking pattern generation. Proc. IEEE/RSJ Int’l Conf. Intelligent Robots and Systems, Vol. 1, pp.239-246, 2001.
Kitamura, S., Kurematsu, Y., and Iwata, M. Motion generation of a biped locomotive robot using an inverted pendulum model and neural networks. Proc. IEEE Conf. Decision and Control, Vol.6, pp.3308-3312, 1990.
Miura, H., and Shimoyama, I. Dynamic walk of a biped. Int’l J. Robotics Research Vol.3, No. 2, pp. 60-74, 1984.
Kim, J.-Y., Park, I.-W., and OH, J.-H. Walking control algorithm of biped humanoid robot on uneven and inclined floor. J. Intelligent and Robotic Systems , Vol. 48, NO. 4, pp. 457–484, 2007.
Kwon, T., and Hodgins, J. Control systems for human running using an inverted pendulum model and a reference motion capture sequence. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2010.
Tsai, Y.-Y., Cheng, K. B., Lin, W.-C., Lee, J., and Lee, T.-Y. Real-time physics-based 3d biped character animation using an inverted pendulum model. IEEE Transactions on Visualization and Computer Graphics Vol.16, No.2, pp.325–337, 2010.
Lee, Y., Kim, S., Lee, J., Data-Driven Biped Control, In ACM Transactions on Graphics, Vol. 29, No. 4, 2010.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top