|
Yin, K., Loken, K., and Vandepanne, M. SIMBICON: simple biped locomotion control. ACM Transactions on Graphics, Vol.26 , No.105, 2007. Vukobratovic, M., and Juricic, D. Contribution to the synthesis of biped gait. In IEEE Transactions on Biomedical Engineering, Vol.16, pp.1–6, 1969. Goswami, A., and Kallem, V. Rate of change of angular momentum and balance maintenance of biped robots. IEEE Int. Conf. Robotics and Automation, 2004. Kudoh, S., Komura, T., and Ikeuchi, K. Stepping motion for a humanlike character to maintain balance against large perturbations. In IEEE Int. Conf. Robotics and Automation, 2006. Abe, Y., da Silva, M., and Popović, J. Multiobjective control with frictional contacts. ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp.249-258, 2007. Jain, S., Ye, Y., and Liu, C. K. Optimization-based interactive motion synthesis. ACM Transactions on Graphics, Vol.28, No.1, 2009. Komura, T., Leung, H., and Kuffner, J. Animating reactive motions for biped locomotion. In ACM symposium on Virtual Reality Software and Technology, 2004. Macchietto, A., Zordan, V., and Shelton, C. R. Momentum control for balance. ACM Trans. Graph, Vol.28,No. 80, 2009. Ye, Y., Liu, C. K. Optimal feedback control for character animation using an abstract model. ACM Transactions on Graphics, Vol. 29, 2010. Liu, C. K., Hertzmann, A., and Popović, Z. Learning physics-based motion style with nonlinear inverse optimization. ACM Transactions on Graphics, Vol.24, No. 3 , 1071–1081, 2005. Rose, C., Guenter, B., Bodenheimer, B., and Cohen, M. F. Efficient generation of motion transitions using spacetime constraints. In Proceedings of SIGGRAPH 96, ACM, Computer Graphics Proceedings, Annual Conference Series, pp.147–154, 1996. Safonova, A., Hodgins, J. K., and Pollard, N. S. Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. ACM Transactions on Graphics, Vol. 23, pp. 514–521, 2004. Levine, S., Lee, Y., Koltun, V., and Popović, Z. 2011. Space-time planning with parameterized locomotion controllers. ACM Transactions on Graphics, Vol.30, No. 23. Muico, U., Lee, Y., Popovic´, J., and Popović, Z. Contact-aware nonlinear control of dynamic characters. ACM Transactions on Graphics, Vol. 28, No.81, 2009. Wu, J., and Popović, Z. Terrain-adaptive bipedal locomotion control, ACM Trans. Graph, Vol. 29, No.72, 2010. Wei, X., Min J., and, Chai, J. X. Physically-valid statistical motion models for human motion generation. ACM Transactions on Graphics, Vol.30, No. 19, 2011. Wang, J., Fleet, D. J., and Hertzmann, A. Optimizing walking controllers. ACM Transactions on Graphics Vol.28, 2009. Yin, K., Coros, S., Beaudoin, P., and Vandepanne, M. Continuation methods for adapting simulated skills. ACM Transactions on Graphics, Vol.27, 2008. Vondark, M., Sigal, L., Hodgins. J. , and Jenkins, O. Brown University. Video-based 3D motion capture through biped control. ACM Transactions on Graphics, Vol. 31, No. 27, 2012. Brown, DF., Macchietto, A., Yin, K., and Zordan, V. Control of Rotational Dynamics for Ground Behaviors, ACM/Eurographics Symposium on Computer Animation 2013. Arikan, O., and Forsyth, D. A. Interactive motion generation from examples. ACM Transactions on Graphics, Vol. 21, pp.483–490, 2002. Sok, K. W., Kim, M., and Lee, J. Simulating biped behaviors from human motion data. ACM Transactions on Graphics, Vol.26, No. 107, 2007. Yin, K., Pai, D. K., and van de Panne, M. Data-driven interactive balancing behaviors. In Pacific Graphics, 2005. Jo ̈rg, S., Hodgins, J., and Safonova, A. Data-driven finger motion synthesis for gesturing characters. ACM Transactions on Graphics , Vol.31, No. 189, 2012. Lee, Y., Wampler, K., Bernstein, G., Popović, J., and Popovic´ , Z. Motion fields for interactive character locomotion. ACM Transctions on Graphics, Vol.29, NO. 138, 2010. Levine, S., Wang, J.-M., Haraux, A., and Popović, Z., and Koltun, V. Continuous character control with low-dimensional embeddings. ACM Transactions on Graphics , Vol. 31, No. 28, 2012. Liu, L., Yin, K., van de Panne, M., Shao,T., and Xu, W. Sampling – based Contact -rich Motion Control. ACM Transaction on Graphics, Vol. 29, No.128, 2010. Liu L., Yin, K., van de Panne, M., and Guo, B. Terrain Runner: Control, parameterization, composition, and planning for highly dynamic motions. ACM Transactions on Graphics, Vol.31, No. 154, 2012. Zordan, V., B., Majkowska, A., Chiu, B., Fast, M. Dynamic response for motion capture animation. In ACM SIGGRAPH, pp. 697–701,2005. Zordan, V., B., Majkowska, A., Medina, J., Soriano, M., C-C, WU. Interactive dynamic response for games, In ACM SIGGRAPH symposium on Video games , pp. 9–14,2007. Morimoto, J., Zeglin, G., and Atkeson, C. Minimax differential dynamic programming: Application to a biped walking robot. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003. Nakaoka, S., Nakazawa, A., and Yokoi, K. Generating whole body motions for a biped humanoid robot from captured human dances. In Proceedings of the IEEE International Conference on Robotics and Automation, pp.3905–3910, 2003. Tsianos, K. I., Sucan, I. A., and Kavraki, L. E. Sampling-based robot motion planning: Towards realistic applications. Computer Science Review, Vol. 1, pp.2–11, 2007. Murai, A., and Yamane, K. A neuromuscular locomotion controller that realizes human-like responses to unexpected disturbances. In Proc. International Conference on Robotics and Automation, IEEE, pp.1997–2002, 2011. Coros, S., Beaudoin, P., and van de Panne, M. Robust task-based control policies for physics-based characters. ACM Transactions on Graphics, Vol. 28, No. 170, 2009. Coros, S., Karpathy, A., Jones, B., Reveret, L., and van de Panne, M. Locomotion skills for simulated quadrupeds. ACM Transactions on Graphics, Vol. 30, No. 59,2011. Kajita, S., Kanehiro, F., Kaneko, K., Yokoi, K., and Hirukawa, H. The 3d linear inverted pendulum mode: A simple modeling for a bipedwalking pattern generation. Proc. IEEE/RSJ Int’l Conf. Intelligent Robots and Systems, Vol. 1, pp.239-246, 2001. Kitamura, S., Kurematsu, Y., and Iwata, M. Motion generation of a biped locomotive robot using an inverted pendulum model and neural networks. Proc. IEEE Conf. Decision and Control, Vol.6, pp.3308-3312, 1990. Miura, H., and Shimoyama, I. Dynamic walk of a biped. Int’l J. Robotics Research Vol.3, No. 2, pp. 60-74, 1984. Kim, J.-Y., Park, I.-W., and OH, J.-H. Walking control algorithm of biped humanoid robot on uneven and inclined floor. J. Intelligent and Robotic Systems , Vol. 48, NO. 4, pp. 457–484, 2007. Kwon, T., and Hodgins, J. Control systems for human running using an inverted pendulum model and a reference motion capture sequence. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2010. Tsai, Y.-Y., Cheng, K. B., Lin, W.-C., Lee, J., and Lee, T.-Y. Real-time physics-based 3d biped character animation using an inverted pendulum model. IEEE Transactions on Visualization and Computer Graphics Vol.16, No.2, pp.325–337, 2010. Lee, Y., Kim, S., Lee, J., Data-Driven Biped Control, In ACM Transactions on Graphics, Vol. 29, No. 4, 2010.
|