跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/07 13:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周國隆
研究生(外文):Kuo-Lung Chou
論文名稱:毛豆種子異黃酮含量變異之研究
論文名稱(外文):Studies on Isoflavone Contents Variation of Seeds in Vegetable Soybean
指導教授:劉啓東李瑞興李瑞興引用關係
指導教授(外文):Chii-Dong LiuRuey-Shing Lee
學位類別:博士
校院名稱:國立嘉義大學
系所名稱:農業科學博士學位學程
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
畢業學年度:101
語文別:中文
論文頁數:123
中文關鍵詞:毛豆種原異黃酮基因型環境交感作用
外文關鍵詞:Vegetable soybeanGermplasmIsoflavoneGenotypeEnvironmentInteraction
相關次數:
  • 被引用被引用:1
  • 點閱點閱:513
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要探討毛豆各種異黃酮類型及含量,在種子發育過程中的分布及在不同基因型、環境及其交感作用的變異,作為日後毛豆育種及開發機能性產品之參考。試驗結果顯示在分析的12種異黃酮類型中,毛豆種子中以含有醣基之daidzin、genistin、glycitin、malonyldaidzin、malonylgenistin、malonylglycitin等6種葡萄糖苷為主,占異黃酮總量的92.8~99.3%;子葉以daidzin、genistin、malonyldaidzin、malonylgenistin等4種類型為主,其異黃酮總量的變化趨勢與種子相近,而胚軸中以daidzin、glycitin、malonyldaidzin、malonylglycitin等4種類型為主,其異黃酮總量的變化趨勢則與種子不同。毛豆種原中真正影響異黃酮總量變異的因子,是種子大小,而不是種皮顏色。以小粒種的異黃酮總量最高,其次為中粒種,最低為大粒種,含量高的品種與含量低的品種相差7~9倍。秋作栽培異黃酮總量則較春作栽培高68.2~95.9%,探究其原因是種子發育過程中,秋作的溫度明顯較春作為低,造成種子累積的異黃酮含量較高。在異黃酮總量路徑分析方面,顯示以malonylgenistin及malonyldaidzin兩種類型含量的正向貢獻量最大。異黃酮總量變異在基因型、環境及其交感效應均呈顯著性差異,其變異成分主要受基因型及環境主效應的影響,各占總變異的32.9% 及48.4%,其中環境效應又以年期主效應影響最大,占總變異的44.7%。經AMMI模式分析可將異黃酮類型分為兩群,A群包括異黃酮總量與daidzin、 genistin、malonyldaidzin、malonylgenistin等5種類型,其含量相互間呈正的相關性狀群;而B群包括glycitin及malonylglycitin兩種類型,其含量相互間呈正相關。由於毛豆在春、秋兩作的栽培環境呈現完全相反的變化,不容易育成同時適合兩期作栽培的高異黃酮含量品種,因此在育種選拔上建議採用分季選拔,育成適合各期作的專用品種。另外,在毛豆育種目標上亦建議二種不同方向,一是以去除毛豆的豆青味及苦澀味為目標,選育具低異黃酮含量的品種;另一是以提高毛豆的保健用途為目標,選育具高異黃酮含量的品種,再配合適合的環境,來開發高機能性的毛豆產品。
This study investigated the distribution of isoflavone types and contents in seeds while the variation of isoflavone contents under different growth stages, genotypes, and the environments were explored. The study aims to serve as future reference in the development of new cultivars and functional products. Test results showed among the twelve types of isoflavone analyzed, glucosides found in vegetable soybeans include mainly daidzin, genistin, glycitin, malonyldidzin, malonylgenistin and malonylglycitin, accounting for 92.8% to 99.3% of total isoflavone contents. In cotyledon, daidzin, genistin, malonyldaidzin, and malonylgenistin were the major types of isoflavone found, while the variation of isoflavone contents was similar to whole seed. In embryo axis, daidzin, glycitin, malonyldaidzin, and malonylglycitin were the major types of isoflavone found. The variation of total isoflavone contents was different for embryo axis and whole seed. The real factor on the variation of total isoflavone contents is the seed size rather than seed coat color among vegetable soybean germplasms. Total isoflavone contents of small seed variety was the highest, followed by medium seed variety, while large seed variety had the lowest isoflavone contents. The highest isoflavone content was 7 to 9 times more than the lowest among the eighty germplasms which were examined. Total isoflavone contents in seeds harvested from fall crop were higher by 68.2% to 95.9% than that of spring crop. The reason for the gap is due to the average temperature fall crop are under is significantly lower than that of spring crop, causing total isoflavone contents of seeds to be at a higher level. Path analysis showed that the maximum positive contributions for total isoflavone contents were attributed to malonylgenistin and malonyldaidzin. The variation of total isoflavone contents was significantly different in various genotypes, and growth environments and their interactions. The main components of variance were genotype and environment, accounting for 32.9% and 48.4% of total variation respectively. The primary factor of environment effect was of year and season, accounting for 44.7% of total variation. The AMMI model analysis can divide isoflavone types into two groups. Group A include five types of isoflavone, including total isoflavone, daidzin, genistin, malonyldaidzin, and malonylgenistin, while their contents are positively correlated. Group B includes two types of isofalvone, inclduing glycitin and malonylglycitin, with contents also positively correlated. As weather conditions in spring and fall vary signifcantly, it is not feasible to breed a specific variety of vegetable soybean which can be grown during both seasons. It is suggested to cultivate specific variety for different cropping seasons. In addition, there are two suggestions for the breeding of vegetable soybean are proposed. One is to remove the beany flavor and bitter taste, breeding varieties with low isoflavone contents. The other suggestion is to promote health properties of vegetable soybeans, breeding varieties with high isoflavone contents and to find suitable environment to develop highly functional products.
頁次
中文摘要…………………………………………………………… i
英文摘要…………………………………………………………… iii
誌謝……………………………………………………………… v
目次……………………………………………………………… Ⅰ
表目次…………………………………………………………… Ⅲ
圖目次………………………………………………………… Ⅵ
前言……………………………………………………………… 1
第一章 大豆異黃酮的研究進展…………………………………… 4
一、大豆種子中各種異黃酮類型的結構及存在的形式…..….… 4
二、大豆種子中各種異黃酮類型的代謝途徑…………..….…… 6
三、大豆種子中異黃酮含量的遺傳變異……………..…….…… 11
四、大豆種子中異黃酮含量的環境變異……..………….……… 12
五、大豆種子中異黃酮含量的分布…………………………… 14
第二章 毛豆種原之種子中異黃酮含量之變異…………………… 15
一、材料與方法………………...…………………………….… 15
二、結果……..…………………………………………………… 20
(一)毛豆種原不同種皮色之異黃酮類型含量的變異..……… 20
(二)毛豆種原不同種子大小之異黃酮類型含量的變異……… 26
(三)毛豆種原種子中各種異黃酮類型含量之平均值、
變幅、變異係數及遺傳率………………...……..….….…… 32
(四)毛豆種原種子中各種異黃酮類型含量間之相關及路
徑分析……………………………………………………………… 36
三、討論……..…………………………………………………… 39
第三章 毛豆種子發育過程中異黃酮含量之分布.……………… 42
一、材料與方法………………...…………………………….… 42
二、結果……..………………………………………………….… 44
(一)毛豆品種間之種子發育過程中異黃酮類型含量分布…… 44
(二)毛豆品種之種子中發育過程中子葉及胚軸的異黃酮
類型含量分布……………………..……………………… 51
三、討論……..………………………………………………….… 60
第四章 不同基因型與環境對毛豆種子中異黃酮含量的影響.….… 62
一、材料與方法………………...………………………...…….… 62
二、結果……..……………………………………………….…… 65
(一)毛豆種子中各種異黃酮類型含量之綜合變異………...… 65
(二)毛豆種子中各種異黃酮類型含量之遺傳型變異…..….… 69
(三)毛豆種子中各種異黃酮類型含量之環境變異………...… 73
(四)毛豆種子中各種異黃酮類型含量之遺傳型與環境間
交感效應………………………………………..…….…… 75
第五章 結論……………………….……………………….…….. 100
參考文獻…………………………………………………………… 102
附錄…………………………………………………………………… 109
川村智子、久田陽一、奧田和代、野呂征男、安田雅晴、越川兼行、田中俊弘。2000a。エダマメのイソフラボン(1)種子の生長と含有量の変動について。Natural Medicines 54(2): 90-92。
川村智子、久田陽一、奧田和代、野呂征男、安田雅晴、越川兼行、田中俊弘。2000b。エダマメのイソフラボン(2)栽培品種による含有量の変動。Natural Medicines 54(4): 196-198。
李穎宏、周國隆、陳正敏、龔賢鳯。2007。毛豆品種(系)及栽培地區對異黃酮之影響。高雄區農業改良場研究彙報18(1):26-52。
周國隆、李穎宏、李承翰。2013。植物種苗研究團隊-毛豆育種及大農場機械化生產之研究。行政院農業委員會高雄區農業改良場101年度科技計畫研究報告22 pp.。
來永才、李煒、王慶祥、李霞輝、齊寧、林紅。2006。黑龍江省野生大豆高異黃酮新種質創新利用Ⅰ異黃酮含量及與籽粒相關性狀的分析。大豆科學23(4):412-414。
家森幸男、太田靜行、渡邊昌。2001。大豆イソフラボン。日本東京。株式會社幸書房發行。165 pp.。
孫君明、丁安林、常汝鎮、東惠茹。1995。中國大豆異黃酮含量的初步分析。中國糧油學報10(4):51-54。
孫君明、丁安林。1997。地理環境對大豆種子中異黃酮累積的影響趨勢。大豆科學16(4):298-303。
孫君明、丁安林、常汝鎮。1998。大豆籽粒中異黃酮含量的質量-數量性狀的遺傳分析初探。大豆科學17(4):305-310。
孫君明、丁安林、常汝鎮。2002。大豆籽粒中異黃酮含量的遺傳初步分析。中國農業科學35(1):16-21。
陳璿宇、郭寶錚。2002。利用不同模式分析基因型與環境交感效應之研究(Ⅱ)AMMI模式的介紹。科學農業50: 362-371。
陳璿宇、郭寶錚。2003。利用不同模式分析基因型與環境交感效應之研究(Ⅲ)以AMMI模式分析交感效應。中華農學會報4: 234-244。
陳慧美。2004。國產大豆、黑豆之BBI及異黃酮定量分析研究。台南師範學院碩士論文。99 pp.。
梁慧珍、李衛東、曹穎妮、王輝。2006。大豆籽粒異黃酮含量的遺傳效應研究。作物學報32:856-860。
梁慧珍、李衛東、方宣鈞、曹穎妮、王輝。2005。大豆異黃酮及其組分含量的配合力和雜種優勢。中國農業科學38:2147-2152。
曾國良、王繼安、韓英鵬、張彬彬、姜振峰、滕衛麗、羅秋蘭、李文濱。2007。大豆異黃酮含量與主要農藝性狀相關性及通徑分析。大豆科學26(1):25-29。
遠藤浩志、大野正博、丹治克男、境哲文、金子憲太郎。2004。ダイズ品種の収量およびイソフラボン含量に及ぼす播種期およびと登熟環境条件の影響。日作紀73(3):293-299。
境哲文、菊池彰夫、島田尚典、高田吉丈、河野雄飛、島田信二。2005。ダイズ子实中のイソフラボン含量および組成の品種.系統間差異と子实特性および播種時期との関係。日作紀74(2):156-164。
境哲文、二瓶直登、高田吉丈、河野雄飛、高橋浩司、島田信二。2006。ダイズ子实中のイソフラボン含量に及ぼす品種と栽培条件の影響。日作紀75(3):296-305。
Allred C. D., Y. H. Ju, K. F. Allred, J. Chang and W. G. Helferich. 2001. Dietary genistin stimulates growth of estrogen-dependent breast cancer tumors similar to that observed with genistein. Carcinogenesis 22: 1667-1673.
Berger, M., C. A. Rasolohery, R. Cazalis and J. Dayde. 2008. Isoflavone accumulation kinetics in soybean seed cotyledons and hypocotyls: distinct pathways and genetic controls. Crop Sci. 48: 700708.
Caragay, A. B. 1992. Cancer preventive foods and ingredients. Food Technol. 4: 6568.
Carrao-Panizzi, M. C. and K. Kitamura. 1995. Isoflavone content in Brazilian soybean cultivars. Breeding Sci. 45: 295300.
Carrao-Panizzi, M. C., K. Kitamura, A. D. P. Beleia and M. C. N. Oliveira. 1998. Influence of growth locations on isoflavone contents in Brazilian soybean cultivars. Breeding Sci. 48: 409413.
Castoldi, R., H. C. O. Charlo, P. F. Vargas, L. T. Braz and M. C. Carrao-Panizzi. 2011. Agronomic characteristics, isoflavone content and Kunitz trypsin inhibitor of vegetable soybean genotypes. Hort. Bra. 29: 222227.
Day A. J., M. S. Dupont, S. Ridley, M. Rhodes, M. J. C. Rhodes, M. R. A. Morgan and G. Williamson. 1998. Deglycosylation of flavonoid and isoflavonoid glycosides by human small intesine and liver L-glucosidase activity. FEBS Letter 436: 71-75.
Dixon R. A. and N. L., Paiva. 1995. Stress-induced phanylpropanoid metabolism. Plant Cell 7: 1085-1097.
Dixon R. A. and D. Ferreira. 2002. Molecules of interest genistein. Phytochem. 60: 205-211.
Egli, D. B. 1975. Rate of accumulation of dry weight in seed of soybean and its relationship to yield. Can. J. Plant Sci. 55: 215-219.
Eldridge, A. C. and W. F. Kwolek. 1983. Soybean isoflavones: effect of environment and variety on composition. J. Agri. Food Chem. 47: 4895 -4898.
Gauch, H. G. and R.W. Zobel. 1988. Predicitive and postdictive success of statistical analysis of yield trials. Theor. Appl. Genet. 76: 1–10.
Gauch, H. G. and R.W. Zobel. 1997. Identifying mega-environments and targeting genotypes. Crop Sci. 37: 311–326.
Hendrich, S. 2002. Bioavailability of isoflavones. J. Chromatogr. B. 777: 203 210.
Hoeck, J. A., W. R. Fehr, P. A. Murphy and G. A. Welke. 2000. Influence of genotype and environment on isoflavone content of soybean. Crop Sci. 40: 4851.
Huang, A. S., O. A. L. Hsieh and S. S. Chang. 1982. Characterization of the non volatile minor constituents responsible for the objectionable taste of defatted soybean flour. J. Food Sci. 47: 1923.
Kitamura K., K. Agate, A. Kikuchi, S. Kudou and K Okubo. 1991. Low isoflavone content in some early maturing cultivars, so-called “summer-type soybean” [Glycine max (L.) Merr.]. Jpn. J. Breed. 41: 651-654.
Kim, J. A. and I. M. Chung. 2007. Change in isoflavone concentration of soybean (Glycine max L.) seeds at different growth stages. J. Sci. Food Agric. 87: 496503.
Kim, J. A., S. B. Hong, W. S. Jung, C. Y. Yu, K. O. Ma, J. G. Gwag and I. M. Chung. 2007. Comparison of isoflavones composition in seed, embryo, cotyledon and seed coat of cooked-with-rice and vegetable soybean (Glycine max L.) varieties. Food Chem. 102: 738744.
Kudou, S., Y. Fleury, D. Magnolato, T. Uchida, K. Kitamura and K. Okubo. 1991. Malonyl isoflavone glycosides in soybean seeds (Glycine max (L.) Merrill). Agric. Biol. Chem. 55: 22272233.
Lee, S. J., W. Yan, J. K. Ahn and I. M. Chung. 2003. Effects of year, site, genotype and their interactions on various soybean isoflavones. Field Crops Res. 81: 181192.
Liang, H. Z., W. D. Li, H. Wang and X. J. Fang. 2005. Genetic analysis of combining abilities and heterosis for the contents of soybean isoflavone and its components among the soybean varieties [Glycine max (L.) Merr.]. Agric. Sci. China. 4(7): 555560.
Moreno-Gonza´lez, J., J. Crossa and P. L. Cornelius. 2003. Additive main effects and multiplicative interaction model: I. Theory on variance components for predicting cell means. Crop Sci. 43: 19671975.
Munro I. C., M. Harwood, J. J. Hlywka, A. M. Stephen, J. Doull, W. G. Flamm and H. Adlercreutz. 2003. Soy isoflavones: A safety review. Nutr. Rev. 61: 1-33.
Murphy, S. E., E. A. Lee, L. Woodrow, P. Seguin, J. Kumar, I. Rajcan and G. R. Ablett. 2009. Genotype × Environment interaction and stability for isoflavone content in soybean. Crop Sci. 49: 13131321.
Pacheco, R. M., J. B. Duarte, R. Vencovsky. J. B. Pinheiro and A. B. Oliveira. 2005. Use of supplementary genotypes in AMMI analysis. Theor. Appl. Genet. 110: 812818.
Piskula M. K., J. Yamakoshi and Y. Iwai. 1999. Daidzein and genistein but not their glucosides are absorbed from the rat stomach. FEBS Letters 447: 287-291.
Ren M. Q., G. Kuhn, J. Wegner and J. Chen. 2001. Isoflavones, substances with multi-biological and clinical properties. Eur. J. Nutr. 40: 135-146.
Setchell K. D. R., N. M. Brown, L. Zimmer-Nechemias, W. T. Brashear, B. E. Wolfe, A. S. Kirschner and J. E. Heubi. 2002. Evidence for lack of absorption of soy isoflavone glycosides in humans, supporting the crucial role of intestinal metabolism for bioavailability. Am. J. Clin. Nutr. 76: 447-453.
Singh B., T. K. Bhat and B. Singh. 2003. Potential therapeutic applications of some antinutritional plant secondary metabolites. J. Agri. Food Chem. 51: 5579-5597.
Tsukamoto, C., S. Shimada, K. Igita, S. Kudou, M. Kokubun, K. Okubo and K. Kitamura. 1995. Factors affecting isoflavone content in soybean seeds: Changes in isoflavones, saponins, and composition of fatty acids at different temperatures during seed development. J. Agri. Food Chem. 43: 11841192.
Turner N. J., B. M. Thomson and I. C. Shaw. 2003. Bioactive isoflavones in functional foods: The importance of gut microflora on bioavailability. Nutr. Rev. 61: 204-213.
Vargas, M., J. Crossa, F. A. van Elgersma, M. E. Ramirez and K. Sayre. 1999. Using partial least squares regression, factorial regression, and AMMI model for interpreting genotype × environment interaction. Crop Sci. 39: 955967.
Wang, H. J. and P. A. Murphy. 1994. Isoflavone composition of American and Japanese soybeans in Iowa: Effects of variety, crop year, and location. J. Agri. Food Chem. 42: 16741677.
Wang, H. J. and P. A. Murphy. 1996. Mass balance study of Isoflavones during soybean processing. J. Agric. Food Chem. 44: 23772383.
Wang, C., M. Sherrard, S. Pagadala, R. Wixon and R. A. Scott. 2000. Isoflavone content among maturity group 0 to Ⅱ soybeans. JAOCS 77: 483487.
Yan, W. and I. Rajcan. 2002. Biplot evaluation of test sites and trait relations of soybean in Ontario. Crop Sci. 42: 11–20.
Yau, S. K. 1995. Regression and AMMI analysis of genotype × environment interactions: An empirical comparison. Agron. J. 87: 121–126.
Zhang Y., G. J. Wang, T.T. Song, P. A. Murphy and S. Hendrich. 1999. Urinary disposition of the soybean isoflavones daidzein, genistein and glycitein differs among humans with moderate fecal isoflavone degradation activity. J. Nutr. 129: 957-962.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top