跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/01/23 05:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:顏琦昌
研究生(外文):Ci-Chang Yan
論文名稱:合成鑑定二氧化鈰奈米結構及光學性質
論文名稱(外文):Synthesis and Characterization of CeO2 Nanostructures and their Optical Properties
指導教授:田禮嘉
指導教授(外文):Li-Chia Tien
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
論文頁數:103
中文關鍵詞:奈米結構二氧化鈰水熱法光觸媒光學性質
外文關鍵詞:nanostructuresCeO2hydrothermalphotocatalyticoptical properties
相關次數:
  • 被引用被引用:5
  • 點閱點閱:973
  • 評分評分:
  • 下載下載:92
  • 收藏至我的研究室書目清單書目收藏:0
本實驗以硝酸亞鈰與氫氧化鈉為前驅物,利用水熱法成功製備出二氧化鈰奈米結構,並探討不同水熱成長溫度與添加界面活性劑十六烷基三甲基溴化銨(CTAB)前後對二氧化鈰之表面形貌、晶體結構、缺陷含量以及發光特性之影響,同時利用若丹明水溶液光降解實驗研究其光觸媒性質。實驗結果顯示,水熱成長溫度影響二氧化鈰產物之形貌,在高成長溫度與低成長溫度的條件下,分別生成二氧化鈰奈米顆粒與奈米棒,由XRD分析其晶體結構皆為立方螢石結構,由XPS分析發現隨著水熱成長溫度的增加,二氧化鈰的氧缺陷與Ce3+的含量逐漸變少,而在添加CTAB後,二氧化鈰的氧缺陷與Ce3+的含量明顯增加。由室溫光致激發光光譜(PL)分析發現合成之二氧化鈰發光範圍主要為420、460、540與600 nm。並且同時在PL分析與UV/vis分析中觀察到圖譜有偏移的現象,我們推測這可能是量子限制效應造成的藍位移與氧空缺造成的紅位移競爭的結果。在光觸媒活性測試,在添加CTAB後、水熱溫度為180℃的成長條件下,合成的二氧化鈰具有最佳的光觸媒性質。
In this study, Ce(NO3)3•6H2O and NaOH were used as precursors to synthesize CeO2 nanostructures by a hydrothermal process. The effects of growth temperature and the addition of CTAB to their surface morphology, structure, defect density, and optical property have been examined. Moreover the photocatalytic activity were characterized by the degradation of rhodamine B.The XRD results clearly show that the as-synthesized nanostructures are cubic fluorite structure. The obtained nanostructures are nanocubes (high temperature) and nanorods (low temperature) under different hydrothermal temperature. From the XPS analysis, we observe the content of oxygen vacancy and Ce3+ decrease with increasing growth temperature. With the addition of CTAB, the content of oxygen vacancy and Ce3+ increase significantly. The optical property of CeO2 nanostructures were characterized by room temperature photoluminescence. Four strong emissions were observed at 420 nm, 460 nm, 540 nm, and 600 nm respectively. The blue-shifting and red-shifting have been observed in both PL and UV/visible spectrum. We assume that it may be result from the competition between quantum confinement (biue-shift) effect and oxygen vacancies(red-shift) of nanostructured CeO2.
摘要 I
Abstract II
目錄 III
圖目錄 VII
表目錄 XIII
1.緒論 1
1.1 前言 1
1.2 研究目的 2
2.文獻回顧 5
2.1 二氧化鈰的性質 5
2.1.1 二氧化鈰的基本性質與應用 5
2.1.2 二氧化鈰的光學性質 7
2.1.3 二氧化鈰的光觸媒性質 8
2.2 奈米二氧化鈰的合成方法 9
2.2.1 水熱法 9
2.2.2 其他合成方法 10
2.3 水熱合成二氧化鈰奈米顆粒的形成機制 12
2.3.1 過飽和溶液的產生 13
2.3.2 核生成 13
2.3.3 奧斯瓦爾德熟化(奧氏熟化) 14
2.3.4 溶解/再結晶 15
3.實驗方法 19
3.1 實驗流程 19
3.2 實驗儀器與藥品 19
3.3 實驗步驟 20
3.3.1 水熱法合成二氧化鈰 20
3.3.2 以介面活性劑輔助成長二氧化鈰 20
3.3.3 退火 21
3.4 分析儀器 21
3.4.1 X光繞射分析儀(XRD) 22
3.4.2 場發射掃描式電子顯微鏡(FE-SEM) 22
3.4.3 穿透式電子顯微鏡(TEM) 23
3.4.4 光致激發光光譜儀(PL) 23
3.4.5 紫外光/可見光吸收光譜儀(UV/visible) 24
3.4.6 X光光電子光譜儀(XPS) 25
3.5 光觸媒活性測試 25
4.實驗結果與討論 31
4.1 表面形貌之分析 31
4.1.1 改變水熱成長溫度 31
4.1.2 添加CTAB 33
4.2 結構分析 34
4.2.1 XRD鑑定分析 34
4.2.2 TEM分析 36
4.3 XPS鑑定分析 38
4.3.1 改變水熱成長溫度 38
4.3.2 添加CTAB 40
4.4 光學性質分析 42
4.4.1 紫外光/可見光光譜分析 42
4.4.2 光致激發光光譜分析 46
4.5 光觸媒活性分析 47
4.5.1 改變水熱成長溫度 48
4.5.2 添加CTAB 50
5.結論 97
6.參考文獻 99

1.A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum ots”, Science 271 , 933-937 (1996).
2.E. W. Wong, P. E. Sheehan, C. M. Lieber, “Nanobeam mechanics:Elasticity, strength, and toughness of nanorods and nanotubes”, Science 277, 1971-1975 (1997).
3.H. F. Mark, D. F. Othmer, C. G Overberger and G T. Seaborg, “Kirk-Othmer Encyclopedia of Chemical Technology”, John Wiley & Sons, New York 5 (1970).
4.F. S. Galass, “Structure and Properties of Inorganic Solids”, Pergamon,Oxford (1970).
5.H. Imagawa, A. Suda, K. Yamamura and S. Sun, “Monodisperse CeO2 Nanoparticles and Their Oxygen Storage and Release Properties”, J. Phys. Chem. C 115, 1740-1745 (2011).
6.Y. Zhang, T. Cheng, Q. Hu, Z. Fang, K. Han “Study of the preparation and properties of CeO2 single/multiwall hollow microspheres”, J. Mater. Res. Soc. 22, 1472-1478 (2007).
7.R. Gallage, A. Matsuo, T. Watanabe, N. Matsushita, M. Yoshimura. “Fabrication of transparent ceria films by spray deposition without post firing”, J. Electroceram. 22, 33-39 (2009).
8.王芃文(2012),以水熱法合成二氧化鈰奈米線和氧化鎢-二氧化鈰核/殼結構奈米棒及其氣感之應用,碩士論文,國立中興大學材料科學與工程學系所。
9.F. Chevire, F. Munoz, C. F. Baker, F. Tessier, O. Larcher, S. Boujday, C. Colbeau-Justin and R. Marchand, “UV Absorption Properties of Ceria-Modified Compositions within the Fluorite-type Solid Solution CeO2-Y6WO12”, J. Solid State Chem. 179, 3184-3190 (2006).
10.B. C. Mohanty, J.W. Lee, D. H. Yeon, Y. H. Jo, J.H. Kim and Y. S. Cho, “Dopant induced variations in microstructure and optical properties of CeO2 nanoparticles”, Mater. Res. Bull. 46, 875-883 (2011).
11.X. M. Liu, W. L. Gao, J. Zhang, “Facile synthesis of monodispersed CeO2 nanostructures”, J. Phys. Chem. Solids 72, 1472-1476 (2011).
12.X. W. Lu, X. Z. Li, F. Chen, C. Y. Ni, Z. G. Chen, “Hydrothermal Synthesis of Prism-like Mesocrystal CeO2”, J. Alloys Compd. 476 , 958-962 (2009).
13.S. Maensiri , C. Masingboon , P. Laokul , W. Jareonboon , V. Promarak , P. L. Anderson , S. Seraphin, “Egg White Synthesis and Photoluminescence of Platelike Clusters of CeO2 Nanoparticles”, Cryst. Growth Des. 7, 950-955 (2007).
14.G. F. Wang, Q. Y. Mu, T. Chen, Y. D. Wang, “Synthesis, characterization and photoluminescence of CeO2 nanoparticles by a facile method at room temperature”, J. Alloys compd. 493, 202-207 (2010)
15.G. R. Bamwenda, T. Uesigi, Y. Abe, K. Sayama and H. Arakawa, “The Photocatalytic Oxidation of Water to O2 over Pure CeO2, WO3 and TiO2 using Fe3+ and Ce4+as Electron Acceptors”, Appl. Catal. A 205, 117-128 (2001).
16.J. M. Coronado, A. J. Maira, A. Martinez-Arias, J. C. Conesa and J. Soria, “EPR Study of the Radicals Formed upon UV Irradiation of Ceria-based Photocatalysts”, J. Photochem. Photobio. A Chem. 150, 213-221 (2002).
17.G. Magesh, B. Viswanathan, R. P. Viswanath, T. K. Varadarajan, “Photocatalytic behavior of CeO2-TiO2 system for the degradation of methylene blue“, Indian Journal of chemistry section A 48A, 480-488 (2009).
18.N. C. Wu, E. W. Shi, Y. Q. Zheng and W. J. Li, “Effect of Medium on Hydrothermal Synthesis of Nanocrystalline Cerium(IV) Oxide Powders”, J. Am. Ceram. Soc. 85, 2462-2468 (2002).
19.M. Hirano and E. Kato, “Hydrothermal Synthesis of Nanocrystalline Cerium(IV) Oxide Powders”, J. Am. Ceram. Soc. 82, 786-788 (1999).
20.H. X. Mai, L. D. Sun, Y. W. Zhang,R. Si, W. Feng, H. P. Zhang, H. C. Liu and C. H. Yan, “Shape-Selective Synthesis and Oxygen Storage Behavior of Ceria Nano-polyhedra, Rods, and Cubes”, J. Phys. Chem. B, 109, 24380-24385 (2005).
21.H. F. Li, G. Z. Lu, Q. G. Dai, Y. Q. Wang, Y. Guo, Y. L. Guo, “Hierarchical Organization and Catalytic Activity of High-Surface-Area Mesoporous Ceria Microspheres Prepared Via Hydrothermal Routes”, ACS Appl. Mater. Interfaces 2, 838-846 (2010).
22.T. Masui, K. Fujiwara, K. Machida, G. Adachi, “Characterization of Cerium(IV) Oxide Ultrafine Particles Prepared Using Reversed Micelles”, Chem. Mater. 9, 2197-2204 (1997).
23.M. L. Dos Santos , R. C. Lima, C. S. Riccardi, R. L. Tranquilin, P. R. Bueno, J. A. Varela, E. Longo, “Preparation and characterization of ceria nanospheres by microwave-hydrothermal method”, Materials Letters 62 4509-4511 (2008).
24.H. I. Chen and H. Y. Chang, “Synthesis and Characterization of Nanocrystalline Cerium Oxide Powders by Two-Stage Non-Isothermal Precipitation”, Solid State Commun. 133, 593-598 (2005).
25.Z. Y. Guo, G.C. Li, Z. L. Cui, F. L. Du, “Synthesis of Single-crystalline CeCO3OH with Shuttle Morphology and Their Thermal Conversion to CeO2, Cryst. Growth Des. 8 , 2674-2677 (2008).
26.Y. Hakuta, S. Onai, H. Terayama, T. Adschiri, K. Arai, “Production of Ultra-fine Ceria Particles by Hydrothermal Synthesis Under Supercritical Conditions”, J. Mater. Sci. Lett. 17, 1211-1213 (1998).
27.L. Yin , Y. Wang , G. Pang , Y. Koltypin , A. Gedanken , “Sonochemical synthesis of cerium oxide nanoparticles-effect of additives and quantum size effect ”, J. Colloid Interface Sci. 246, 78-84 (2002).
28.Y. Zhou, R. J. Phillips, J. A. Switzer, “Electrochemical Synthesis and Sintering of Nanocrystalline Cerium(IV) Oxide Powders”, J. Am. Ceram Soc. 78, 981-985 (1995).
29.J. W. Mullin, “Crystallization”, Butterworth-Heinemann, Boston, (1993).
30.N. Du, H. Zhang, B. D. Chen, X. Ma and D. R. Yang, “Ligand-free self-assembly of ceria nanocrystals into nanorods by oriented attachment at low temperature”, J. Phys. Chem. C 111, 12677-12680 (2007).
31.G. C. Xi, K. Xiong, Q. B. Zhao, R. Zhang, Houbo Zhang, and Y. T. Qian, “Nucleation-Dissolution-Recrystallization: A New Growth Mechanism for t-Selenium Nanotubes”, Cryst. Growth Des. 6, 577-582 (2006).
32.T. Masui, K. Fujiwara, K. I. Machida, G. Y. Adachi, “Characterization of Cerium(IV) Oxide Ultrafine Particles Prepared Using Reversed Micelles”, Chem. Mater. 9, 2197-2204 (1997).
33.H. X. Mai, L. D. Sun, Y. W. Zhang,R. Si, W. Feng, H. P. Zhang, H. C. Liu and C. H. Yan, “Shape-Selective Synthesis and Oxygen Storage Behavior of Ceria Nano-polyhedra, Rods, and Cubes”, J. Phys. Chem. B, 109, 24380-24385 (2005).
34.M. Romeo, K. Bak, J. E. Fallah, F. L. Normand, L. Hilaire, “Quantitative XPS analysis of the oxidation state of cerium in Pt-CeO2/Al2O3 catalysts”, Surf. Interface Anal. 20, 508-512 (1993).
35.S. Deshpande, S. Patil, Kuchibhatla SVNT, S. Seal, “Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide”, Appl. Phys. Lett. 87, 133113 (2005).
36.H. I. Chen and H. Y. Chang, “Synthesis and Characterization of Nanocrystalline Cerium Oxide Powders by Two-Stage Non-Isothermal Precipitation”, Solid State Commun. 133, 593-598 (2005).
37.F. Larachi, J. Pierre, A. Adnot and A. Bernis, “Ce 3d xps study of composite cexmn1-xo2-y wet oxidation catalysts”, Appl. Surf. Sci. 195, 236-250 (2002).
38.A. Vantomme, Z. Y. Yuan, G. Du, B. L. Su, “Surfactant-Assisted Large-Scale Preparation of Crystalline CeO2 Nanorods”, Langmuir 21, 1132-1135 (2005).
39.Z. Wang, Zewei. Q, and J. Lin, “Remarkable Changes in the Optical Properties of CeO2 Nanocrystals Induced by Lanthanide Ions Doping”, Inorg. Chem. 46, 5237-5242 (2007).
40.J. J. Miao, H. Wang, Y. R. Li, J. M. Zhu, J. J. Zhu, “Ultrasonic-induced synthesis of CeO2 nanotubes”, J. Cryst. Growth 281, 525-529 (2005).
41.N. Sabari Arul, D. Mangalaraj, P. C. Chen, N. Ponpandian, C. Viswanathan, “Strong quantum confinement effect in nanocrystalline cerium oxide”, Mater Lett. 65, 2635-2638 (2011).
42.陳位同(2010),氣相傳輸法合成一維氧化鎵奈米結構與光觸媒應用,碩士論文,國立東華大學材料科學與工程學系。
43.Y. Li, S. Sun, M. Ma, Y. Ouyang, W. Yan, “Kinetic study and model of the photocatalytic degradation of rhodamine B (RhB) by a TiO2-coated activated carbon catalyst: Effects of initial RhB content,light intensity and TiO2 content in the catalyst”, Chem. Eng. J. 142, 147-155 (2008).
44.Y. Zheng, C. Chen, Y. Zhan, X. Lin, Q. Zheng, K. Wei, J. Zhu, Y.Zhu, “Luminescence and Photocatalytic Activity of ZnO Nanocrystals: Correlation between Structure and Property”, Inorg.Chem. 46, 6675-6682 (2007).
45.Y. Liu, Z. H. Kang, Z. H. Chen, I. Shafiq, J. A. Zapien, I. Bello, W. J. Zhang, S. T. Lee, “Synthesis, Characterization, and Photocatalytic Application of Different ZnO Nanostructures in Array Configurations”, Cryst. Growth Des. 9, 3223-3227 (2009).
46.J. Liqiang, Q. Yichun, W. Baiqi, L. Shudan, J. Baojiang, Y. Libin, F. Wei, F. Honggang, S. Jiazhong, “Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity”, Sol. Energy Mater. Sol.Cells 90, 1773-1787 (2006).


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊