[01] A. Fujishima, K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature 238 (1972) p37-38.
[02] N. Hanley, J. F. Shogren, B. White, Environmental economics in theory and practice (1997).
[03] N. Serpone, E. Pelizzetti, Photocatalysis: Fundamental and Applications (1983).
[04] S. U. M. Khan, Al.-S. Mofareh, W. B. I. Jr., Efficient photochemical water splitting by a chemically modified n-TiO2, Science 297 (2002) p2243-2245.
[05] S. Huang, P.-Ju. Chueh, Y.-W. Lin, T.-S. Shih, S.-M. Chuang, Disturbed mitotic progression and genome segregation are involved in cell transformation mediated by nano-TiO2 long-term exposure, Toxicology and Applied Pharmacology 241 (2009) p182-194.
[06] H. Yu, J. Yu, B. Cheng, M. Zhou, Effects of hydrothermal post-treatment on microstructures and morphology of titanate nanoribbons, Journal of Solid State Chemistry 179 (2006) p349-354.
[07] L. Dong, K. Cheng, W. Weng, Chenlu Song, P. Du, G. Shen, G. Han, Hydrothermal growth of rutile TiO2 nanorod films on titanium substrates, Thin Solid Films 519 (2011) p4634-4640.
[08] K. Byrappa, T. Adschiri, Hydrothermal technology for nanotechnology, Progress in Crystal Growth and Characterization of Materials 53 (2007) p117-166.
[09] R. Yoshida, Y. Suzuki, S. Yoshikawa, Syntheses of TiO2(B) nanowires and TiO2 anatase nanowires by hydrothermal and post-heat treatments, Journal of Solid State Chemistry 178 (2005) p2179-2185.
[10] K. Prasad, D.V. Pinjari, A.B. Pandit, S.T. Mhaske, Phase transformation of nanostructured titanium dioxide from anatase-to-rutile via combined ultrasound assisted sol–gel technique, Ultrasonics Sonochemistry 17 (2010) p409–415.
[11] Y. You, S. Zhang, L. Wan, D. Xu, Preparation of continuous TiO2 fibers by sol–gel method and its photocatalytic degradation on formaldehyde, Applied Surface Science 258 (2012) p3469–3474.
[12] S. Perera, E. G. Gillan, A facile solvothermal route to photocatalytically active nanocrystalline anatase TiO2 from peroxide precursors, Solid State Sciences 10 (2008) p864-872.
[13] X. Shen, B. Tian, Microemulsion-mediated solvothermal synthesis and photocatalytic properties of crystalline titania with controllable phases of anatase and rutile, Journal of Hazardous Materials 192 (2011) p651–657.
[14] 羅啟仁, 銳鈦礦高能球磨之相變態研究, 國立東華大學材料科學與工程學研究所碩士論文 (2009) p33.[15] 彭懷夫, 以濕式化學法製備TiO2晶相、形貌與其成長性質之研究,國立東華大學化學研究所碩論文 (2004) p34.
[16] 楊筱筠, 利用斜角度沉積法製備二氧化鈦薄膜於染料敏化太陽能電池之運用, 國立東華大學電子工程研究所碩論文 (2008) p123.
[17] 蔡宜親, 二氧化鈦奈米顯微結構對染料敏化太陽能電池效率影響之研究, 國立東華大學材料科學與工程學研究所碩士論文 (2007) p116.[18] 王順輝, 濺鍍製備硼與碳摻雜二氧化鈦薄膜的可見光光觸媒之研究, 國立東華大學材料科學與工程學研究所碩士論文 (2005) p100.[19] S.-Di Mo, W. Y. Ching, Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite, Physical Review B 51 (1995) p13023-13032.
[20] G. Pfaff, P. Reynders, Angle-Dependent Optical Effects Deriving from Submicron Structures of Films and Pigments, Chemical Reviews 99 (1999) p1963-1981.
[21] M.A. Butler, R.D. Nasby, R. K. Quinn, Tungsten trioxide as an electrode for photoelectrolysis of water, Solid State Commun, 19 (1976) p1011–1014.
[22] M.A. Butler, Photoelectrolysis and physical properties of the semiconducting electrode WO2 ,Journal of Applied Physics, 48 (1977) p1914-1920.
[23] M. T. Nenadovic, T. Rajh , O. I. Micic, A. J. Nozik, Electron transfer reactions and flat-band potentials of tungsten(VI) oxide colloids, The Journal of Physical Chemistry, 88 (1984), p 5827-5830.
[24] C A Bignozzi, S. Caramori, V. Cristino, R. Argazzi, L. Medac, A. Taccac, Nanostructured photoelectrodes based on WO3: applications to photooxidation of aqueous electrolytes, Chemical Society Reviews, 42 (2013) p2228-2246.
[25] W. W. Gärtner, Depletion-Layer Photoeffects in Semiconductors, Physical Review, 116 (1959) p 84-87
[26] M. A. Butler, Photoelectrolysis and physical properties of the semiconducting electrode WO2 , Journal of Applied Physics, 48 (1977) p 1914-1920.
[27] D. S. Ginley, M. A. Butler, The photoelectrolysis of water using iron titanate anodes ,Journal of Applied Physics, 48 (1977) p 2019 – 2021.
[28] B. A. Gregg, Interfacial processes in the dye-sensitized solar cell, Coordination Chemistry Reviews, 248 (2004) p 1215-1224.
[29] A. J. Nozik, M. Rüdiger, Chemistry of Semiconductor−Liquid Interfaces, Memming, The Journal of Physical Chemistry, 100 (1996) p 13061–13078.
[30] R. Eisenberg, D. G. Nocera, Preface: Overview of the Forum on Solar and Renewable Energy, Inorganic Chemistry, 44 (2005) p6799.
[31] J. Dufour, L. López, A. Formoso, C. Negro, R. Latorre, M. F. López, Mathematical model of goethite synthesis by oxyprecipitation of steel pickling liquors, The Chemical Engineering Journal and the Biochemical Engineering Journal. 59 (1995) p 287-291.
[32] J. Dufour, R. Latorre, C. Negro, E.M. Alcalá, A. Formoso, M. F. López, Protocol for the synthesis of Ba-hexaferrites with prefixed coercivities, Journal of Magnetism and Magnetic Materials 172 (1997) p 308-316.
[33] T. Ishikawa, H. Nakazaki, A. Yasukawa, K. Kandori, M. Seto, Structure and properties of magnetite formed in the presence of nickel(II) ions, Materials Research Bulletin. 33 (1998) p 1609-1619.
[34] Visalakshi, G. G. Venkateswaran, S.K. Kulshreshtha, P.N. Moorthy, Compositional characteristics of magnetite synthesised from aqueous solutions at temperatures upto 523K, Mater. Res. Bull. 28 (1993) p 829-836.
[35] S.E. Siemniak, M.E. Jones, K.E.S. Combs, Magnetite solubility and phase stability in alkaline media at elevated temperatures, Journal of Solution Chemistry 24 (1995) p 837-877.
[36] D.J. Craik, Magnetic Oxides II, (1975)
[37] M. Haruta, B. Delmon, preparation of homodisperse solids, Journal de Chimie Physique et de Physico-Chimie Biologique 83 (1986) p 859-868.
[38] J. R. Correaa, D. Canettib, R. Castilloa, J. C. Llópizb, J. Dufourc, Influence of the precipitation pH of magnetite in the oxidation process to maghemite, Materials Research Bulletin 41 (2006) p 703-713.
[39] T. Misawa, K. Hashimoto, S. Shimodaira, Formation of Fe(II) Fe(III) intermediate green complex on oxidation of ferrous ion in neutral and slightly alkaline sulphate solutions, Journal of Inorganic and Nuclear Chemistry 35 (1973) p 4167-4174.
[40] J. Vinš, J. Šubrt, V. Zapletal, F. Hanousek, Preparation and properties of green rust type substances,Collection of Czechoslovak Chemical Communications. 52 (1987) p 93-102.
[41] A.A. Olowe, J.M.R. Genin, P. Bauer, Hyperfine interactions and structures of ferrous hydroxide and green rust II in sulfated aqueous media Hyperfine Interactions, 41 (1988) p501–504.
[42] J. Detournay, M. Ghodsi, R. Derie, Influence de la Température et de la Présence des Ions Etrangers sur la Cinétique et le Mécanisme de Formation de la Goethite en Milieu Aqueux ,Zeitschrift für anorganische und allgemeine Chemie 412 (1975) p 184-192.
[43] J. Dufour, J.O. Marro´n, C. Negro, R. Latorre, A. Formoso, F. L. Mateos, Mechanism and kinetic control of the oxyprecipitation of sulphuric liquors from steel pickling, Chemical Engineering Journal, 68 (1997) p 173-187.
[44] Y.B. Khollam, H.S. Potdar, S.B. Deshpande, P.P. Bakare, S.R. Sainkar, S.K. Date, Effect of variation of molar ratio (pH) on the crystallization of iron oxide phases in microwave hydrothermal synthesis, Materials Letters, 57 (2002) p 457-462.
[45] B.E. Monsen, S.E. Olsen, L. Kolbeinsen, Kinetics in magnetite oxidation , Scandinavian Journal of Metallurgy, 23 (1994) p74-80.
[46] D. G.M. Costa, G. E. De, R.E. Vandenberghe, Mössbauer studies of magnetite and Al-substituted maghemites, Hyperfine Interactions, 117 (1998) p 207-243.
[47] G.S. Chopra, C. Real, M.D. Alcala, P. L.A. Maqued, J. Subrt, J.M. Criado, Factors Influencing the Texture and Stability of Maghemite Obtained from the Thermal Decomposition of Lepidocrocite, Chemistry of Materials, 11 (1999) p 1128-1137.
[48] N Yoshihiko, M. Matsuoka, Some Electrical Properties of γ-Fe2O3 Ceramics , Japanese Journal of Applied Physics, 22 (1983) p233-239.
[49] W. Feitknecht, U. Mannweiler, Der Mechanismus der Umwandlung von γ- zu α-Eisensesquioxid, Helvetica Chimica Acta 50 (1967) p 570-581.
[50] B. Gillot, F. Bouton, A. Rouset, Correlation between ir spectr, X-ray diffraction and distribution of structural vacancies in Fe3+[δFe1−3δ2+Fe(1−x)+2δ3+Mx3+]O42−-type spinels, Journal of Solid State Chemistry. 32 (1980) p 303-310.
[51] F. Gazzarini, G. Lanzavechia, Proceedings of the Sixth Interantional Symposium of the Reactivity of Solids (1968)
[52] B. Gillot, F. Chassagneaux, A. Rouset, Role de la taille des cristallites dans l'oxydation de spinelles ferreux, Materials Chemistry. 6 (1981) p 233-253.
[53] X. Ye, D. Lin, Z. Jiao, L. Zhang, The thermal stability of nanocrystalline maghemite Fe2O3, Journal of Physics D: Applied Physics 31 (1998) p 2739-2744.
[54] D. W. Bacon, T. L. Henson, Statistical Design and Model Building, 1971, p72.
[55] S. C. Panga, S. F. China, M. A. Anderson, Redox equilibria of iron oxides in aqueous-based magnetite dispersions: Effect of pH and redox potential, Journal of Colloid and Interface Science, 311 (2007) p 94-101.
[56] B. M. Mantecón, K. O'Grady, Grain size and blocking distributions in fine particle iron oxide nanoparticles, Journal of Magnetism and Magnetic Materials 203 (1999) p 50-53.
[57] E. Sada, H. Kumazawa, H.M. Cho, Formation of fine magnetite particles by oxidation of aqueous suspensions of ferrous hydroxide,The Canadian Journal of Chemical Engineering. 68 (1990) p 622-626.
[58]K. Sivula, R. Zboril, F. L. Formal, R. Robert, A. Weidenkaff, J. Tucek, J. Frydrych, M.l. Gra¨tzel, Photoelectrochemical Water Splitting with Mesoporous Hematite Prepared by a Solution-Based Colloidal Approach, Journal of the American Chemical Society, 132 (2010) p7436–7444.
[59] B. D. Alexander, P. J. Kulesza, I. Rutkowska, R. Solarska, J. Augustynski, Metal oxide photoanodes for solar hydrogen production, Journal of Materials Chemistry 18 (2008) p 2298-2303.
[60] R. v. d. Krol, Y. Liang, J. Schoonman, Solar hydrogen production with nanostructured metal oxides, Journal of Materials Chemistry 18 (2008) p 2311-2320.
[61] S. C. Jorand, M. Ulmann, B.D. Alexander, J. Augustynski, A. Weidenkaff, Photoelectrochemical oxidation of water at transparent ferric oxide film electrodes, Chemical Physics Letters 376 (2003) p 194-200.
[62] M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru,M. Grätzel, Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers, Journal of the American Chemical Society 127 (2005), p 16835-16847.
[63] U. Bjoerksten, J. Moser, M. Graetzel, Photoelectrochemical Studies on Nanocrystalline Hematite Films,Chemistry of Materials. 6 (1994) p 858-863.
[64] J. Moser,M. Grätzel, Photoelectrochemistry with Colloidal Semiconductors; Laser Studies of Halide Oxidation in Colloidal Dispersions of TiO2 andα-Fe2O3, Helvetica Chimica Acta , 65 (1982) p1436-1444.
[65] X. Qian, X. Zhang, Y. Bai, T. Li, X. Tang, E. Wang, S. Dong, Photoelectrochemical Characteristics Of α-Fe2O3 Nanocrystalline Semiconductor Thin Film, Journal of Nanoparticle Research., 2 (2000) p191-198.
[66] M. Kiyama, S.-I. Shamoto, H. Nanao, O. Yoshiro, T. Takada, Growth of needle-like α-FeO(OH) particles by air oxidation of aqueous suspensions containing iron (II) precipitates, Chemical Engineering Journal. 64 (1986) p 150-156.
[67] M. Abareshi, E. K. Goharshadi, S. M. Zebarjad, H. K. Fadafan, A. Youssefi, characterization and measurement of thermal conductivity of Fe3O4 nanofluids, Journal of Magnetism and Magnetic Materials. 322 (2010) p3895-3901.
[68] T. Ishikawa, H. Nakazaki, A. Yasukawa, K. Kandori, M. Seto, Structure and properties of magnetite formed in the presence of nickel(II) ions, Materials Research Bulletin. 33 (1998) p 1609-1619.
[69] S.E. Siemniak, M.E. Jones, K.E.S. Combs, Magnetite solubility and phase stability in alkaline media at elevated temperatures, Journal of Solution Chemistry , 24 (1995) p 837-877.
[70] M. Haruta, B. Delmon, preparation of homodisperse solids, Journal de Chimie Physique et de Physico-Chimie Biologique, 83 (1986) p 859.
[71] D. Predoi, O. Crisan, A. Jitianu, M.C. Valsangiacom, M. Raileanu, M. Crisan, M. Zaharescu, Iron oxide in a silica matrix prepared by the sol-gel method, Thin Solid Films, (2007) 515 p 441-449.
[72] O. H. de, C. Andrade, M. C. de, Electrical impedance spectroscopy investigation of surfactant-magnetite-polypyrrole particles, Journal of Colloid and Interface Science 319 (2008) 441-449.
[73] C. P. Ki, F. Wang, S. Morimoto, M. Fujishige, A. Morisako, X. Liu, Y. J. Kim, Y. C. Jung, One-pot synthesis of iron oxide–carbon core–shell particles in supercritical water, Materials Research Bulletin. 44 (2009) p 1443-1450.
[74] R. Jose, B. Eduardo, C. Dora, L. Vivian, O.-D. Luis, N. Carlos, G Adrian, S.-P. Regino, Structure and superparamagnetic behaviour of magnetite nanoparticles in cellulose beads, Materials Research Bulletin 45 (2010) p 946-953.
[75] B. Junhyeong, K. Kijung, J. Hyejun, C. Soonja, Homogeneously distributed magnetite in the polystyrene spherical particles using the miniemulsion polymerization, Journal of Industrial and Engineering Chemistry 16 (2010) p1040-1049.
[76] D. Ficai, A. Ficai, B. S. Vasile, M. Ficai, O. Oprea, C. Guran, E. Andronescu, Synthesis of rod-like magnetite by using low magnetic field, Digest Journal of Nanomaterials and Biostructures. 6 (2011) p 943-951.
[77] C.-Y. Yin, M. Minakshi, D. E. Ralph, Z.-T. Jiang, Z. Xie, H. Guo, Hydrothermal synthesis of cubic α-Fe2O3 microparticles using glycine: Surface characterization, reaction mechanism and electrochemical activity, Journal of Alloys and Compounds 509 (2011) p9821–9825.
[77] F. Fajaroh, H. Setyawan, W. Widiyastuti, S. Winardi, Synthesis of magnetite nanoparticles by surfactant-free electrochemical method in an aqueous system, Advanced Powder Technology 23 (2012) p 328-333.
[78] H. Itoh, T. Sugimoto, Systematic control of size, shape structure and magnetic properties of uniform magnetite and maghemite particles, Journal of Colloid and Interface Science 265(2003) p 83–295.
[79] A. M. Jubb, H. C. Allen, Vibrational Spectroscopic Characterization of Hematite Maghemite and Magnetite Thin Films Produced by Vapor Deposition, ACS Applied Materials & Interfaces 2 (2010) p 804–2812.
[80] K. Petcharoen, A.Sirivat, Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method, Materials Science and Engineering B 177 (2012) p 421-427.
[81] M. Gunay, H. Kavas, M., Baykal, Simple polyol route to synthesize heptanoic acid coated magnetite (Fe3O4) nanoparticles, Materials Research Bulletin 48 (2013) p 1296-1303.