跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/10 18:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:柯沅鋒
研究生(外文):Yuan-feng Ke
論文名稱:利用氧化鐵在可見光下產氫
論文名稱(外文):Solar Hydrogen Production by Exciting Iron Oxide in Visible Light
指導教授:陳俊良陳俊良引用關係蘇彥勳蘇彥勳引用關係
指導教授(外文):Chun-Liang Chen
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
論文頁數:126
中文關鍵詞:Fe3O4磁鐵礦氧化鐵光致產氫奈米粒子水解pH氫氣赤鐵礦Fe2O3產氫
外文關鍵詞:photohydrogennanocompositeswater splittingpHhydrogenHematiteFe2O3Fe3O4magnetite
相關次數:
  • 被引用被引用:0
  • 點閱點閱:311
  • 評分評分:
  • 下載下載:46
  • 收藏至我的研究室書目清單書目收藏:0
環境目前是處於惡化的階段如何運用能源是未來的重大課題,在眾多能源中光能是被稱作取之不盡,用之不竭的能量。然而因地域問題在有光的地方才可利用,氫能補足地域問題只要儲存得當就可以隨身攜帶,兩者的結合產生光電產氫更是未來注目的焦點。
  本實驗先以降低汙染為優先故選擇氧化鐵,氧化鐵眾多選擇Fe3O4(magnetite)α-Fe2O3(Hematite),以Fe3O4為主使用不同的界面活性劑控制pH值達到兩者比例有差別。在產氫方面製作氧化鐵電極並另外用氧化鐵磁特性控制膜厚來做到區別,使用的光源也特選三種可見光源雖都囊括可見光區。效率上最好有達到12.61%主要的由一定比例的Fe3O4和α-Fe2O3組成的氧化鐵電極。


Deterioration of the environment is now at the stage of how to use the energy of the future a major issue, in light of the many energy is referred to as an inexhaustible energy. However, due to problems in the light of the local area can make use of, hydrogen stored properly complement regional problem as long as you can carry, the combination produces photovoltaic hydrogen production is the next focus of attention.
This study, the first priority in order to reduce pollution of the selected oxide, iron oxide great selection of Fe3O4 (magnetite) α-Fe2O3 (Hematite), to Fe3O4-based surfactants with different pH to control the ratio between the difference. In terms of hydrogen production and the production of iron oxide electrode control magnetic properties of iron oxide in addition to do the film thickness difference between the light source used is also selected three kinds of visible light, although both include the visible region. Efficiency is best to have reached 12.61% mainly by a certain percentage of Fe3O4 and α-Fe2O3 iron oxide electrode composed.

摘要 II
致謝 III
章節目錄 V
圖目錄 IV
表目錄 IX
第一章 前言 1
1-1 前言 1
第二章 歷史回顧 5
2-1 起源 5
2-2本多-藤嶋效應(honda-fujishima effect) 5
2-3 合適材料 5
2-3-1 TiO2 6
2-3-2 WO3 6
2-4氧化鐵 6
2-4-1α-Fe2O3(Hematite) 7
2-4-2 Fe3O4 (Magnetite) 7
2-4-3 總論 7
第三章 實驗流程 9
3-1 材料種類 9
3-2檢測器材 10
3-3製備氧化鐵水溶液製作流程 10
3-4 基板清洗流程 10
3-5基板處理流程以及電極製作 11
3-3 製作白金電極 11
第四章 實驗結果 14
4-1晶體結構與X光繞射分析 14
4-2粒子表面形貌 15
4-3 氧化鐵在不同磁場下的磁力矩 16
4-7 膜厚 16
4-4 氧化鐵的吸收光頻率 17
4-5 循環伏安法(Cyclic Voltammetry) 17
4-6 光電流密度與產氫效率 18
4-7 內電阻與產氫效率 22
4-7 總和討論產氫效率 25
第五章 結論 114
第六章 引用 115

[01] A. Fujishima, K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature 238 (1972) p37-38.
[02] N. Hanley, J. F. Shogren, B. White, Environmental economics in theory and practice (1997).
[03] N. Serpone, E. Pelizzetti, Photocatalysis: Fundamental and Applications (1983).
[04] S. U. M. Khan, Al.-S. Mofareh, W. B. I. Jr., Efficient photochemical water splitting by a chemically modified n-TiO2, Science 297 (2002) p2243-2245.
[05] S. Huang, P.-Ju. Chueh, Y.-W. Lin, T.-S. Shih, S.-M. Chuang, Disturbed mitotic progression and genome segregation are involved in cell transformation mediated by nano-TiO2 long-term exposure, Toxicology and Applied Pharmacology 241 (2009) p182-194.
[06] H. Yu, J. Yu, B. Cheng, M. Zhou, Effects of hydrothermal post-treatment on microstructures and morphology of titanate nanoribbons, Journal of Solid State Chemistry 179 (2006) p349-354.
[07] L. Dong, K. Cheng, W. Weng, Chenlu Song, P. Du, G. Shen, G. Han, Hydrothermal growth of rutile TiO2 nanorod films on titanium substrates, Thin Solid Films 519 (2011) p4634-4640.
[08] K. Byrappa, T. Adschiri, Hydrothermal technology for nanotechnology, Progress in Crystal Growth and Characterization of Materials 53 (2007) p117-166.
[09] R. Yoshida, Y. Suzuki, S. Yoshikawa, Syntheses of TiO2(B) nanowires and TiO2 anatase nanowires by hydrothermal and post-heat treatments, Journal of Solid State Chemistry 178 (2005) p2179-2185.
[10] K. Prasad, D.V. Pinjari, A.B. Pandit, S.T. Mhaske, Phase transformation of nanostructured titanium dioxide from anatase-to-rutile via combined ultrasound assisted sol–gel technique, Ultrasonics Sonochemistry 17 (2010) p409–415.
[11] Y. You, S. Zhang, L. Wan, D. Xu, Preparation of continuous TiO2 fibers by sol–gel method and its photocatalytic degradation on formaldehyde, Applied Surface Science 258 (2012) p3469–3474.
[12] S. Perera, E. G. Gillan, A facile solvothermal route to photocatalytically active nanocrystalline anatase TiO2 from peroxide precursors, Solid State Sciences 10 (2008) p864-872.
[13] X. Shen, B. Tian, Microemulsion-mediated solvothermal synthesis and photocatalytic properties of crystalline titania with controllable phases of anatase and rutile, Journal of Hazardous Materials 192 (2011) p651–657.
[14] 羅啟仁, 銳鈦礦高能球磨之相變態研究, 國立東華大學材料科學與工程學研究所碩士論文 (2009) p33.
[15] 彭懷夫, 以濕式化學法製備TiO2晶相、形貌與其成長性質之研究,國立東華大學化學研究所碩論文 (2004) p34.
[16] 楊筱筠, 利用斜角度沉積法製備二氧化鈦薄膜於染料敏化太陽能電池之運用, 國立東華大學電子工程研究所碩論文 (2008) p123.
[17] 蔡宜親, 二氧化鈦奈米顯微結構對染料敏化太陽能電池效率影響之研究, 國立東華大學材料科學與工程學研究所碩士論文 (2007) p116.
[18] 王順輝, 濺鍍製備硼與碳摻雜二氧化鈦薄膜的可見光光觸媒之研究, 國立東華大學材料科學與工程學研究所碩士論文 (2005) p100.
[19] S.-Di Mo, W. Y. Ching, Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite, Physical Review B 51 (1995) p13023-13032.
[20] G. Pfaff, P. Reynders, Angle-Dependent Optical Effects Deriving from Submicron Structures of Films and Pigments, Chemical Reviews 99 (1999) p1963-1981.
[21] M.A. Butler, R.D. Nasby, R. K. Quinn, Tungsten trioxide as an electrode for photoelectrolysis of water, Solid State Commun, 19 (1976) p1011–1014.
[22] M.A. Butler, Photoelectrolysis and physical properties of the semiconducting electrode WO2  ,Journal of Applied Physics, 48 (1977) p1914-1920.
[23] M. T. Nenadovic, T. Rajh , O. I. Micic, A. J. Nozik, Electron transfer reactions and flat-band potentials of tungsten(VI) oxide colloids, The Journal of Physical Chemistry, 88 (1984), p 5827-5830.
[24] C A Bignozzi, S. Caramori, V. Cristino, R. Argazzi, L. Medac, A. Taccac, Nanostructured photoelectrodes based on WO3: applications to photooxidation of aqueous electrolytes, Chemical Society Reviews, 42 (2013) p2228-2246.
[25] W. W. Gärtner, Depletion-Layer Photoeffects in Semiconductors, Physical Review, 116 (1959) p 84-87
[26] M. A. Butler, Photoelectrolysis and physical properties of the semiconducting electrode WO2 , Journal of Applied Physics, 48 (1977) p 1914-1920.
[27] D. S. Ginley, M. A. Butler, The photoelectrolysis of water using iron titanate anodes ,Journal of Applied Physics, 48 (1977) p 2019 – 2021.
[28] B. A. Gregg, Interfacial processes in the dye-sensitized solar cell, Coordination Chemistry Reviews, 248 (2004) p 1215-1224.
[29] A. J. Nozik, M. Rüdiger, Chemistry of Semiconductor−Liquid Interfaces, Memming, The Journal of Physical Chemistry, 100 (1996) p 13061–13078.
[30] R. Eisenberg, D. G. Nocera, Preface:  Overview of the Forum on Solar and Renewable Energy, Inorganic Chemistry, 44 (2005) p6799.
[31] J. Dufour, L. López, A. Formoso, C. Negro, R. Latorre, M. F. López, Mathematical model of goethite synthesis by oxyprecipitation of steel pickling liquors, The Chemical Engineering Journal and the Biochemical Engineering Journal. 59 (1995) p 287-291.
[32] J. Dufour, R. Latorre, C. Negro, E.M. Alcalá, A. Formoso, M. F. López, Protocol for the synthesis of Ba-hexaferrites with prefixed coercivities, Journal of Magnetism and Magnetic Materials 172 (1997) p 308-316.
[33] T. Ishikawa, H. Nakazaki, A. Yasukawa, K. Kandori, M. Seto, Structure and properties of magnetite formed in the presence of nickel(II) ions, Materials Research Bulletin. 33 (1998) p 1609-1619.
[34] Visalakshi, G. G. Venkateswaran, S.K. Kulshreshtha, P.N. Moorthy, Compositional characteristics of magnetite synthesised from aqueous solutions at temperatures upto 523K, Mater. Res. Bull. 28 (1993) p 829-836.
[35] S.E. Siemniak, M.E. Jones, K.E.S. Combs, Magnetite solubility and phase stability in alkaline media at elevated temperatures, Journal of Solution Chemistry 24 (1995) p 837-877.
[36] D.J. Craik, Magnetic Oxides II, (1975)
[37] M. Haruta, B. Delmon, preparation of homodisperse solids, Journal de Chimie Physique et de Physico-Chimie Biologique 83 (1986) p 859-868.
[38] J. R. Correaa, D. Canettib, R. Castilloa, J. C. Llópizb, J. Dufourc, Influence of the precipitation pH of magnetite in the oxidation process to maghemite, Materials Research Bulletin 41 (2006) p 703-713.
[39] T. Misawa, K. Hashimoto, S. Shimodaira, Formation of Fe(II) Fe(III) intermediate green complex on oxidation of ferrous ion in neutral and slightly alkaline sulphate solutions, Journal of Inorganic and Nuclear Chemistry 35 (1973) p 4167-4174.
[40] J. Vinš, J. Šubrt, V. Zapletal, F. Hanousek, Preparation and properties of green rust type substances,Collection of Czechoslovak Chemical Communications. 52 (1987) p 93-102.
[41] A.A. Olowe, J.M.R. Genin, P. Bauer, Hyperfine interactions and structures of ferrous hydroxide and green rust II in sulfated aqueous media Hyperfine Interactions, 41 (1988) p501–504.
[42] J. Detournay, M. Ghodsi, R. Derie, Influence de la Température et de la Présence des Ions Etrangers sur la Cinétique et le Mécanisme de Formation de la Goethite en Milieu Aqueux ,Zeitschrift für anorganische und allgemeine Chemie 412 (1975) p 184-192.
[43] J. Dufour, J.O. Marro´n, C. Negro, R. Latorre, A. Formoso, F. L. Mateos, Mechanism and kinetic control of the oxyprecipitation of sulphuric liquors from steel pickling, Chemical Engineering Journal, 68 (1997) p 173-187.
[44] Y.B. Khollam, H.S. Potdar, S.B. Deshpande, P.P. Bakare, S.R. Sainkar, S.K. Date, Effect of variation of molar ratio (pH) on the crystallization of iron oxide phases in microwave hydrothermal synthesis, Materials Letters, 57 (2002) p 457-462.
[45] B.E. Monsen, S.E. Olsen, L. Kolbeinsen, Kinetics in magnetite oxidation , Scandinavian Journal of Metallurgy, 23 (1994) p74-80.
[46] D. G.M. Costa, G. E. De, R.E. Vandenberghe, Mössbauer studies of magnetite and Al-substituted maghemites, Hyperfine Interactions, 117 (1998) p 207-243.
[47] G.S. Chopra, C. Real, M.D. Alcala, P. L.A. Maqued, J. Subrt, J.M. Criado, Factors Influencing the Texture and Stability of Maghemite Obtained from the Thermal Decomposition of Lepidocrocite, Chemistry of Materials, 11 (1999) p 1128-1137.
[48] N Yoshihiko, M. Matsuoka, Some Electrical Properties of γ-Fe2O3 Ceramics , Japanese Journal of Applied Physics, 22 (1983) p233-239.
[49] W. Feitknecht, U. Mannweiler, Der Mechanismus der Umwandlung von γ- zu α-Eisensesquioxid, Helvetica Chimica Acta 50 (1967) p 570-581.
[50] B. Gillot, F. Bouton, A. Rouset, Correlation between ir spectr, X-ray diffraction and distribution of structural vacancies in Fe3+[δFe1−3δ2+Fe(1−x)+2δ3+Mx3+]O42−-type spinels, Journal of Solid State Chemistry. 32 (1980) p 303-310.
[51] F. Gazzarini, G. Lanzavechia, Proceedings of the Sixth Interantional Symposium of the Reactivity of Solids (1968)
[52] B. Gillot, F. Chassagneaux, A. Rouset, Role de la taille des cristallites dans l'oxydation de spinelles ferreux, Materials Chemistry. 6 (1981) p 233-253.
[53] X. Ye, D. Lin, Z. Jiao, L. Zhang, The thermal stability of nanocrystalline maghemite Fe2O3, Journal of Physics D: Applied Physics 31 (1998) p 2739-2744.
[54] D. W. Bacon, T. L. Henson, Statistical Design and Model Building, 1971, p72.
[55] S. C. Panga, S. F. China, M. A. Anderson, Redox equilibria of iron oxides in aqueous-based magnetite dispersions: Effect of pH and redox potential, Journal of Colloid and Interface Science, 311 (2007) p 94-101.
[56] B. M. Mantecón, K. O'Grady, Grain size and blocking distributions in fine particle iron oxide nanoparticles, Journal of Magnetism and Magnetic Materials 203 (1999) p 50-53.
[57] E. Sada, H. Kumazawa, H.M. Cho, Formation of fine magnetite particles by oxidation of aqueous suspensions of ferrous hydroxide,The Canadian Journal of Chemical Engineering. 68 (1990) p 622-626.
[58]K. Sivula, R. Zboril, F. L. Formal, R. Robert, A. Weidenkaff, J. Tucek, J. Frydrych, M.l. Gra¨tzel, Photoelectrochemical Water Splitting with Mesoporous Hematite Prepared by a Solution-Based Colloidal Approach, Journal of the American Chemical Society, 132 (2010) p7436–7444.
[59] B. D. Alexander, P. J. Kulesza, I. Rutkowska, R. Solarska, J. Augustynski, Metal oxide photoanodes for solar hydrogen production, Journal of Materials Chemistry 18 (2008) p 2298-2303.
[60] R. v. d. Krol, Y. Liang, J. Schoonman, Solar hydrogen production with nanostructured metal oxides, Journal of Materials Chemistry 18 (2008) p 2311-2320.
[61] S. C. Jorand, M. Ulmann, B.D. Alexander, J. Augustynski, A. Weidenkaff, Photoelectrochemical oxidation of water at transparent ferric oxide film electrodes, Chemical Physics Letters 376 (2003) p 194-200.
[62] M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru,M. Grätzel, Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers, Journal of the American Chemical Society 127 (2005), p 16835-16847.
[63] U. Bjoerksten, J. Moser, M. Graetzel, Photoelectrochemical Studies on Nanocrystalline Hematite Films,Chemistry of Materials. 6 (1994) p 858-863.
[64] J. Moser,M. Grätzel, Photoelectrochemistry with Colloidal Semiconductors; Laser Studies of Halide Oxidation in Colloidal Dispersions of TiO2 andα-Fe2O3, Helvetica Chimica Acta , 65 (1982) p1436-1444.
[65] X. Qian, X. Zhang, Y. Bai, T. Li, X. Tang, E. Wang, S. Dong, Photoelectrochemical Characteristics Of α-Fe2O3 Nanocrystalline Semiconductor Thin Film, Journal of Nanoparticle Research., 2 (2000) p191-198.
[66] M. Kiyama, S.-I. Shamoto, H. Nanao, O. Yoshiro, T. Takada, Growth of needle-like α-FeO(OH) particles by air oxidation of aqueous suspensions containing iron (II) precipitates, Chemical Engineering Journal. 64 (1986) p 150-156.
[67] M. Abareshi, E. K. Goharshadi, S. M. Zebarjad, H. K. Fadafan, A. Youssefi, characterization and measurement of thermal conductivity of Fe3O4 nanofluids, Journal of Magnetism and Magnetic Materials. 322 (2010) p3895-3901.
[68] T. Ishikawa, H. Nakazaki, A. Yasukawa, K. Kandori, M. Seto, Structure and properties of magnetite formed in the presence of nickel(II) ions, Materials Research Bulletin. 33 (1998) p 1609-1619.
[69] S.E. Siemniak, M.E. Jones, K.E.S. Combs, Magnetite solubility and phase stability in alkaline media at elevated temperatures, Journal of Solution Chemistry , 24 (1995) p 837-877.
[70] M. Haruta, B. Delmon, preparation of homodisperse solids, Journal de Chimie Physique et de Physico-Chimie Biologique, 83 (1986) p 859.
[71] D. Predoi, O. Crisan, A. Jitianu, M.C. Valsangiacom, M. Raileanu, M. Crisan, M. Zaharescu, Iron oxide in a silica matrix prepared by the sol-gel method, Thin Solid Films, (2007) 515 p 441-449.
[72] O. H. de, C. Andrade, M. C. de, Electrical impedance spectroscopy investigation of surfactant-magnetite-polypyrrole particles, Journal of Colloid and Interface Science 319 (2008) 441-449.
[73] C. P. Ki, F. Wang, S. Morimoto, M. Fujishige, A. Morisako, X. Liu, Y. J. Kim, Y. C. Jung, One-pot synthesis of iron oxide–carbon core–shell particles in supercritical water, Materials Research Bulletin. 44 (2009) p 1443-1450.
[74] R. Jose, B. Eduardo, C. Dora, L. Vivian, O.-D. Luis, N. Carlos, G Adrian, S.-P. Regino, Structure and superparamagnetic behaviour of magnetite nanoparticles in cellulose beads, Materials Research Bulletin 45 (2010) p 946-953.
[75] B. Junhyeong, K. Kijung, J. Hyejun, C. Soonja, Homogeneously distributed magnetite in the polystyrene spherical particles using the miniemulsion polymerization, Journal of Industrial and Engineering Chemistry 16 (2010) p1040-1049.
[76] D. Ficai, A. Ficai, B. S. Vasile, M. Ficai, O. Oprea, C. Guran, E. Andronescu, Synthesis of rod-like magnetite by using low magnetic field, Digest Journal of Nanomaterials and Biostructures. 6 (2011) p 943-951.
[77] C.-Y. Yin, M. Minakshi, D. E. Ralph, Z.-T. Jiang, Z. Xie, H. Guo, Hydrothermal synthesis of cubic α-Fe2O3 microparticles using glycine: Surface characterization, reaction mechanism and electrochemical activity, Journal of Alloys and Compounds 509 (2011) p9821–9825.
[77] F. Fajaroh, H. Setyawan, W. Widiyastuti, S. Winardi, Synthesis of magnetite nanoparticles by surfactant-free electrochemical method in an aqueous system, Advanced Powder Technology 23 (2012) p 328-333.
[78] H. Itoh, T. Sugimoto, Systematic control of size, shape structure and magnetic properties of uniform magnetite and maghemite particles, Journal of Colloid and Interface Science 265(2003) p 83–295.
[79] A. M. Jubb, H. C. Allen, Vibrational Spectroscopic Characterization of Hematite Maghemite and Magnetite Thin Films Produced by Vapor Deposition, ACS Applied Materials & Interfaces 2 (2010) p 804–2812.
[80] K. Petcharoen, A.Sirivat, Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method, Materials Science and Engineering B 177 (2012) p 421-427.
[81] M. Gunay, H. Kavas, M., Baykal, Simple polyol route to synthesize heptanoic acid coated magnetite (Fe3O4) nanoparticles, Materials Research Bulletin 48 (2013) p 1296-1303.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top