跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/06 09:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡令緯
研究生(外文):Lin-Wei Tsai
論文名稱:人造血液─以奈米鑽石作為血紅素載體
論文名稱(外文):Hemoglobin Based Artificial Blood Substitutes Using Nanodiamond
指導教授:鄭嘉良
指導教授(外文):Chia-Liang Cheng
學位類別:碩士
校院名稱:國立東華大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
論文頁數:57
中文關鍵詞:奈米鑽石血紅素人造血液血液替代品白蛋白
外文關鍵詞:nanodiamondhemoglobinartificial bloodblood substituteserum albumin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:356
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
The basics material properties of nanodiamond (ND) are researched for many years. Nowadays, many groups want to apply this material in biomedical application using its advantages such as low cytotoxicity, intrinsic photoluminescence, sharp characteristic Raman signal, only carbon atoms composition and well-developed synthesis technologies. Due to these advantages, nanodiamond could be a potential material on cancer therapy and targeting drug delivery.
Studying the ND potential for drug delivery, the first problem we would face is nanodiamonds large aggregation. We can observe it in buffer solution (Phosphate buffered saline, PBS as well as cell growth mediums) or blood plasma. In this work we use blood protein albumin (rat serum albumin, RSA) adsorbed on nanodiamonds surface to prevent the ND aggregation. This effect has been analyzed using UV-visible spectrometer to measure RSA adsorption on nanodiamonds. Particle size and -potential are measured using dynamic light scattering analyzer (DLS analyzer) to evaluate the size of aggregates and the surface charge of cND and cND-RSA complexes. If this method to decrease the aggregation is feasible, in the future it could be used in pre-clinical preparation of ND to prevent the side effects which can arise due to large size aggregation.
In bio-medical applications nanodiamonds and their complexes have to be transported by blood circulation to reach the target tissues. If we want to apply any ND complexes in pre-clinical/ clinical studies, the second question we have to face is “does nanodiamonds affect the blood cells, first of all red blood cells (RBC) or not?” In this part of work, we used Raman spectroscopy to measure the oxygenation process of RBC. RBC’s function is to carry or release oxygen, which is bound by protein hemoglobin (Hb) contained in RBC. Hemoglobin conformation depends on oxygenation state and the structure and oxygenation state can be characterized by Raman spectroscopy. We use Raman spectroscopy to estimate the RBC function, using spontaneous oxygenation in the air oxygen-containing atmosphere and purging nitrogen for deoxygenation. Raman spectra were measured every five minutes and the changes of oxygen saturation was calculated using characteristic peaks of oxygenated or deoxygenated state to observe the effects of various treatments on the oxygenation/deoxygenation process.
The basics material properties of nanodiamond (ND) are researched for many years. Nowadays, many groups want to apply this material in biomedical application using its advantages such as low cytotoxicity, intrinsic photoluminescence, sharp characteristic Raman signal, only carbon atoms composition and well-developed synthesis technologies. Due to these advantages, nanodiamond could be a potential material on cancer therapy and targeting drug delivery.
Studying the ND potential for drug delivery, the first problem we would face is nanodiamonds large aggregation. We can observe it in buffer solution (Phosphate buffered saline, PBS as well as cell growth mediums) or blood plasma. In this work we use blood protein albumin (rat serum albumin, RSA) adsorbed on nanodiamonds surface to prevent the ND aggregation. This effect has been analyzed using UV-visible spectrometer to measure RSA adsorption on nanodiamonds. Particle size and -potential are measured using dynamic light scattering analyzer (DLS analyzer) to evaluate the size of aggregates and the surface charge of cND and cND-RSA complexes. If this method to decrease the aggregation is feasible, in the future it could be used in pre-clinical preparation of ND to prevent the side effects which can arise due to large size aggregation.
In bio-medical applications nanodiamonds and their complexes have to be transported by blood circulation to reach the target tissues. If we want to apply any ND complexes in pre-clinical/ clinical studies, the second question we have to face is “does nanodiamonds affect the blood cells, first of all red blood cells (RBC) or not?” In this part of work, we used Raman spectroscopy to measure the oxygenation process of RBC. RBC’s function is to carry or release oxygen, which is bound by protein hemoglobin (Hb) contained in RBC. Hemoglobin conformation depends on oxygenation state and the structure and oxygenation state can be characterized by Raman spectroscopy. We use Raman spectroscopy to estimate the RBC function, using spontaneous oxygenation in the air oxygen-containing atmosphere and purging nitrogen for deoxygenation. Raman spectra were measured every five minutes and the changes of oxygen saturation was calculated using characteristic peaks of oxygenated or deoxygenated state to observe the effects of various treatments on the oxygenation/deoxygenation process.
In the third part of work, we try to develop an oxygen carrier based on hemoglobin and cND-RSA, using rat hemoglobin. Using spectroscopic methods we analyzed its adsorption on ND and estimated the oxygenated and deoxygenated states of hemoglobin adsorbed on nanodiamonds surface. We show that 50 nm cND(RSA)-Hb can carry oxygen successfully, however, due to the complicate physiology condition, further use of this kind of oxygen carrier in-vivo needs more preliminary in-vitro investigations.
Contents
Acknowledgement II
Abstract III
Contents V
List of figure VII
List of table XI
Chapter 1 Introduction 1
1.1 Introduction of nanodiamond 1
1.2 Blood composition and rat serum albumin (RSA) 5
1.3 Red blood cell, hemoglobin and heme 6
1.4 Carboxylated Nanodiamond-RSA (cND-RSA) as Hemoglobin based Artificial Blood Substitutes 8
Chapter 2 Sample preparation 11
2.1 Nanodiamond carboxylation 11
2.2 Phosphate buffer saline (PBS) preparation 12
2.3 Hypotonic solution (20 mOsm) preparation 12
2.4 cND-RSA complex preparation 12
2.5 Red blood cells sample preparation 12
2.6 Preparation of cell free hemoglobin 13
2.7 Preparation of 50 nm cND(RSA)-Hb 13
Chapter 3 Experimental methods and set-up 15
3.1 UV-visible spectroscopy 15
3.2 Particle size and z-potential analysis 16
3.2.1 Particle size measurements 16
3.2.2 z-potential measurements 17
3.3 Introduction of Raman spectroscopy 18
3.4 Red blood cells Raman measurements 19
3.5 Introduction of laser confocal scanning fluorescence microscope 22
Chapter 4 Analysis of 50 nm cND-RSA and measurement of red blood cells (RBCs) oxygen saturation 27
4.1 Analyzing of 50 nm cND-RSA 27
4.2 Measurements of RBCs oxygen saturation 30
Chapter 5 Carboxylated Nanodiamond-RSA (cND-RSA) as Hemoglobin based Artificial Blood Substitutes 43
5.1 Analyzing 50 nm cND(RSA)-Hb 43
5.2 Hb function test using Raman spectroscopy 45
5.3 Stability test of cND(RSA)-Hb 47
5.4 Carboxylated ND(HSA)-Hb in human model 49
Chapter 6 Conclusion 53
Chapter 7 Reference 55

Reference
1. K. lakoubovskii, M. V. Baidakova, B. H. Wouters, A. Stesmans, G. J. Adriaenssens, A. Ya. Vul’ and P. J. Grobet, Diamond Relat. Mater., 9, 861 (2000).
2. I. I. Kulakova, Phys. Solid State, 46, 636 (2004).
3. J.-S. Tu, E. Perevedentseva, P.-H. Chung, and C.-L. Cheng, J. Chem. Phys., 125, 174713 (2006).
4. P.-H. Chung, E. Perevedentseva, J.-S. Tu, C.-C. Chang, and C.-L. Cheng, Diamond Relat. Mater., 15, 622 (2006).
5. K.-K. Liu, C.-L. Cheng, C.-C. Chang, and J.-I. Chao, Nanotechnology, 325102, 18 (2007).
6. E. K. Chow, X.-Q. Zhang, M. Chen, R. Lam, E. Robinson, H.-J. Huang, D. Schaffer, E. Osawa, A. Goga, and Dean Ho, Sci. Transl. Med., 3, 73 (2011).
7. L. C. L. Huang and H.-C. Chang, Langmuir, 20, 5879 (2004).
8. X.-L. Kong, L. C. L. Huang, C.-M. Hsu, W.-H. Chen, C.-C. Han, and H.-C. Chang, Anal. Chem., 77, 259 (2005).
9. T.-S. Huang, Y. Tzeng, Y.-K. Liu, Y.-C. Chen, K.-R. Walker, R. Guntupalli, and C. Liu, Diamond Relat. Mater., 13, 1098 (2004).
10. T.-L. Clare, B.-H. Clare, B. M. Nichols, N. L. Abbott, and R. J. Hamers, Langmuir, 21, 6344 (2005).
11. E. Perevedentseva, N. Melnik, C.-Y. Tsai, Y.-C. Lin, M. Kazaryan, and C.-L. Cheng, Journal of Appl. Phys., 109, 034704 (2011).
12. J.-I. Chao, E. Perevedentseva, P.-H. Ching, K.-K. Liu, C.-Y. Cheng, C.-C. Chang, and C.-L. Cheng, Biophysical Journal, Vol. 93, 2199-2208 (2007).
13. Nitin Mohan, C.-S. Cheng, H.-H. Hsieh, Y.-C. Wu, and H.-C. Chang, Nano Lett., 10, 3692-3699 (2010).
14. Y.-C. Lin, E. Perevedentseva, L.-W. Tsai, K.-T. Wu, and C.-L. Cheng, Journal of Biophotonics (2012).
15. Y.-K. Tzeng, O. Faklaris, B.-M. Chang, Y. Kuo, J.-H. Hsu, and H.-C. Chang, Angew. Chem. Int. Ed., 50, 2262-2265 (2011).
16. D. L. Drabkin, Science, 101(2627):445-451 (1945).
17. L. Pauling et al., Science, 110(2865): 543-548, (1949).
18. K. Kramer, J. O. Elam, G. A. Saxton, and W. N. Elam, Am. J. Physiol., 165:(1) 229-246 (1951).
19. F. Pierigè, S. Serafini, L. Rossi, and M. Magnani, Advanced Drug Delivery Reviews, 60 286-295 (2008).
20. D. E. Markov, H. Boeve, B. Gleich, J. Borgert, A. Antonelli, C. Sfara, and M. Magnani, Phys. Med. Biol., 55, 6461 (2010).
21. M. Magnani, L. Rossi, M. D’ascenzo, I. Panzani, L. Bigi, and A. Zanella, Biotechnology and applied biochemistry, 28, 1, 1-6 (1998).
22. Shaily Mahendra, Huiguang Zhu, Vicki L. Colvin and Pedro J. Alvarez, Environ, Sci. Technol., 42, 24, 9424-9430 (2008).
23. C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith and S. C. Baxter, Acc. Chem. Res., 41, 12, 1721–1730 (2008).
24. Ramser K, Logg K, Goksör M, Enger J, Käll M, and Hanstorp D., Journal of Biomed. Opt., 9(3), 593-600 (2004).
25. A. P. Puzyr, D. A. Neshumayev, S. V. Tarskikh, G. V. Makarskaya, V. Yu. Dolmatov and V. S. Bondar, Diamond Relat. Mater., 13, 2020 – 2023 (2004).
26. A. P. Puzyr, A. V. Baron, K. V. Purtov, E. V. Bortnikov, N. N. Skobelev, O. A. Mogilnaya and V. S. Bondar, Diamond Relat. Mater., 16, 2124 – 2128 (2007).
27. Y.-C. Lin, L.-W. Tsai, E. Perevedentseva, H.-H. Chang, C.-H. Lin, D.-S. Sun, A. E. Lugovtsov, A. Priezzhev, J. Mona, and C.-L. Cheng, Journal of Biomed. Opt., 17, 10 (2012).
28. Ishii T., Ito S., Kumazawa S., Sakurai T., Yamaguchi S., Mori T., Nakayama T., and Uchida K., Biochem. Biophys. Res. Commun., 371(1), 28-32 (2008).
29. B. Elsadek, F. Kratz, Journal of Controlled Release, 157 4-28 (2012).
30. S. F. Rabiner, J. R. Helbert, H. Lopas, L. H. Friedman, Journal of Experimental Medicine, 126, 6, 1127-1142 (1967).
31. A. Gulati, Avadhesh C. Sharma, Kenneth E. Burhop, Life Sciences, 55, 10, 827-837 (1994).
32. Mehvar, R. J. Pharm. Pharmaceut. Sci., 3(1), 125-136 (2000).
33. E. Perevedentseva, F.-Y. Su, T.-H. Su, Y.-C. Lin, C.-L. Cheng, A. V. Karmenyan, A. V. Priezzhev and A. E. Lugovtsov, Quantum Electron., 40, 1089 (2010).
34. H.-D. Wang, Q.-Q. Yang, C. H. N., I. Badea, Diamond Relat. Mater., 20, 1193-1198 (2011).
35. Malvern, Zetasizer user manual.
36. I. P. Torres Filho, J. Terner, R. N. Pittman, E. Proffitt and K. R. Ward, J Appl Physiol., 104, 1809-1817 (2008).
37. B. R. Wood, B. Tait, and D. McNaughton, Biochimica et Biophysica Acta, 1539 58-70 (2001).
38. B. R. Wood and D. McNaughton, J. Raman Spectrosc., 33, 517-523 (2002).
39. K. Ramser, J. Enger, M. Goksör, D. Hanstorp, K. Loggb and M. Käll, Lab on a Chip, 5 (2005).
40. A. C. De Luca, Optics express, 16, 11 (2008).
41. Y.-C. Lin, L.-W. Tsai, E. Perevedentseva, H.-H. Chang, C.-H. Lin, D.-S. Sun, Andrei E. Lugovtsov, Alexander Priezzhev, Jani Mona and C.-L. Cheng, Journal of Biomedical Optics, 17(10), 101512 (2012).
42. A. L. P. Nery, R. M. Liegel and C. Fernandez, Chemical Education Journal, 13, 2 13-22 (2009).
43. F. A. Jenkins and H. E. White, Fundamentals of Optics 3rd Edition, New York, McGraw Hill (1957).
44. M. Born and E. Wolf, Principles of Optics 7th Edition, Cambridge University Press (1999).
45. F. C. Rossetti, L. V. Depieri and M. V. L. B. Bentley, Confocal Laser Microscopy - Principles and Applications in Medicine, Biology, and the Food Sciences, licensee InTech (2013).
46. C. D. McGuinness, K. Sagoo, D. McLoskey and D. J. S. Birch, Applied Physics Letters, 86, 261911 (2005).
47. Kelly L. Aubrey and George J. Thomas, Jr., Biophys. J., 60, 1337-1349 (1991).
48. I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa and K. Niizeki, Journal of Biomedical Optics, 16(8), 086012 (2011).
49. H.-Y. An, Q.-W. Liu, C. Eldeniz and W.-L. Lin, The Open Neuroimaging Journal, 5, 120-135 (2011).
50. E. Antonini and M. Brunori, Anna. Rev. Biochem., 39:977-1042 (1970).
51. J. Abita, and M. Lazdunski, Biochem. Biophys. Res. Commun., 35, 707 (1969).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 謝昌成、蕭雅尤(2012)‧癌症末期病人的口乾困擾‧家庭醫學與基層醫療,27(3),92-96。
2. 蔣榮福、孫米玉、陸志平 &; 蔣榮欽(2002)‧尿素KT/V值真是足量透析的適當指標嗎?腎臟與透析,14(1),26-31。
3. 楊麗玉、金繼春(2008)‧從生理觀點探討血液透析患者的口渴因素‧長庚護理,7(1),26-32。
4. 鈕淑芬 (2004)‧透析病患之生活品質及其相關因素探討‧臺灣腎臟護理學會雜誌,3(2),88-101。
5. 陳翰菱、陳震宇、陳正雄(2006)‧唾液檢體之臨床應用-以荷爾蒙為例‧中華民國醫檢會報,21(2),53-57。
6. 陳佩英、郭素青、張惠甄、劉亞君、徐子英(2007)‧血液透析病患其控握信念、心理困擾與健康促進行為之初探‧臺灣腎臟護理學會雜誌,6(2),27-41。
7. 莊書碩、陳仲達、傅振宗(2003)‧糖尿病腎病變的進展與治療評估‧基層醫學,18(8),188-191。
8. 婁培人、陳文彬、李憲彥、徐茂銘(1997)‧唾液腺的神經支配中華民國耳鼻喉科醫學會雜誌,32(3),79-85。
9. 林秀慧、陳惠敏、郭德芬、王春妍、黃靖惠(2007)‧音樂治療於血液透析病患焦慮、壓力及生理指標之成效探討‧高雄護理雜誌,24(2),1-16。
10. 林明毅、張雅慧(2009) ‧口乾症‧臺灣醫界,52(7),338-343。
11. 周繡玲、謝嘉芬、李佳諭、江孟冠 、紀雯真(2011)‧癌症病人口腔黏膜炎臨床照護指引‧腫瘤護理雜誌,11,61-85。
12. 吳樺姍(2002)‧口腔黏膜改變患者之照護‧長庚護理,13(3),251-257。