|
Chapter 1 [1]Anderson Janotti and C.G.V.d. Walle, Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys., 2009. 72: p. 126501. [2]Hadis Morkoç and Ü. Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology. 1 ed. 2009: Wiley-VCH. 477. [3]H. Y. Shih, et al., Size-dependent photoelastic effect in ZnO nanorods. Appl. Phys. Lett., 2009. 94: p. 021908. [4]Michael H. Huang, et al., Room-Temperature Ultraviolet Nanowire Nanolasers. Science, 2001. 292(8): p. 1897-1899. [5]Y.W. Heo, et al., ZnO nanowire growth and devices. Mater. Sci. Eng., R, 2004. 47(1-2): p. 1-47. [6]R. P. Wang, G. Xu, and P. Jin, Size dependence of electron-phonon coupling in ZnO nanowires. Phys. Lett. B, 2004. 69: p. 113303. [7]H Y Dang, J Wang, and S.S. Fan, The synthesis of metal oxide nanowires by directly heating metal samples in appropriate oxygen atmospheres. Nanotechnology, 2003. 14(7): p. 738-741. [8]Zhang Bin, et al., Raman scattering and photoluminescence of Fe-doped ZnO nanocantilever arrays. Chin. Sci. Bull., 2008. 53(11): p. 1639-1643. [9]Soumitra Kar, B.N.P., Subhadra Chaudhuri, and Dipankar Chakravorty, One-Dimensional ZnO Nanostructure Arrays: Synthesis and Characterization. J. Phys. Chem. B, 2006. 110(10): p. 4605-4611. [10]Pu Xian Gao and Z.L. Wang, Mesoporous Polyhedral Cages and Shells Formed by Textured Self-Assembly of ZnO Nanocrystals. JACS, 2003. 125(37): p. 11299-11305. [11]Matthew J. Bierman and S. Jin, Potential applications of hierarchical branching nanowires in solar energy conversion. Energy Environ. Sci., 2009. 2(10): p. 1050-1059. [12]J. Q. Hu, et al., Thermal Reduction Route to the Fabrication of Coaxial Zn/ZnO Nanocables and ZnO Nanotubes. Chem. Mater., 2003. 15(1): p. 305-308. [13]M.H. Chou, et al., ConfocalRamanspectroscopicmappingstudiesonasingle CuO nanowire. Applied Surface Science, 2008. 254(23): p. 7539–7543. [14]Mehrer, H., Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-controlled Processes. Springer Series in Solid-State Sciences. Vol. 155. 2007, New York: Springer. [15]Davis, J.R., Heat-resistant materials. 2 ed. 1997: ASM International. [16]G. Erdélyi, D.L. Beke, and I.A. Szabó, Study of phenomena occurring at solid/solid interfaces Investigation of interface diffusion and segregation by the radiotracer technique, in Interface Science and Technology. 2004. p. 163-214. [17]B S Murty, et al., Unique Properties of Nanomaterials, in Textbook of Nanoscience and Nanotechnology. 2013, Springer Berlin Heidelberg. p. 29-65. [18]C-L Cheng, et al., Direct observation of short-circuit diffusion during the formation of a single cupric oxide nanowire. Nanotechnology, 2007. 18(24): p. 245604. [19]Wagner, C., Contribution to the Theory of Oxidation. Z. Phys. Chem.B, 1933. 21: p. 25. [20]Shi-Bo Li, et al., The origin of driving force for the formation of Sn whiskers at room temperature. J. Mater. Res., 2007. 22(11): p. 3226-3232. [21]Lu Yuan, et al., The origin of hematite nanowire growth during the thermal oxidation of iron. Mater. Sci. Eng., B, 2012. 177: p. 327-336. [22]C.H. Xu, C.H. Woo, and S.Q. Shi, Formation of CuO nanowires on Cu foil. Chem. Phys. Lett., 2004. 399: p. 62-66. [23]Lu Yuan and G. Zhou, Enhanced CuO Nanowire Formation by Thermal Oxidation of Roughened Copper. J. Electrochem. Soc., 2012. 159(4): p. C205-C209. [24]Xuyang Li, et al., Synthesis of cupric oxide nanowires on spherical surface by thermal oxidation method. Mater. Lett., 2013. 96: p. 192-194. [25]Benjamin J. Hansen, et al., Short-circuit diffusion growth of long bi-crystal CuO nanowires. Chem. Phys. Lett., 2011. 504: p. 41-45. [26]Ashish C. Gandhi, et al., In Situ Confocal Raman Mapping Study of a Single Ti-Assisted ZnO Nanowire. Nanoscale Res. Lett., 2010. 5(3): p. 581-586. [27]Liang Wang, Fitih M. Mohammed, and I. Adesida, Dislocation-induced nonuniform interfacial reactions of Ti/Al/Mo/Au ohmic contacts on AlGaN/GaN heterostructure. Appl. Phys. Lett., 2005. 87: p. 141915. [28]Firat G€uder, et al., Toward Discrete Multilayered Composite Structures: Do Hollow Networks Form in a Polycrystalline Infinite Nanoplane by the Kirkendall Effect? Chem. Mater., 2011. 23: p. 4445-4451. [29]Kittel, C., Introduction to Solid State Physics. 8 ed. 2005: John Wiley & Sons, Inc. 680. [30]Giuseppe Faraci, et al., Modified Raman confinement model for Si nanocrystals. Phys. Rev. B, 2006. 73(3): p. 033307. [31]W F Zhang, et al., Raman scattering study on anatase TiO2 nanocrystals. J. Phys. D:Appl. Phys., 2000. 33: p. 912-916. [32]J. B. Wang, et al., Raman study for E2 phonon of ZnO in Zn1-xMnxO nanoparticles. J. Appl. Phys., 2005. 97: p. 086105. [33]Min Yang, et al., Study of the Raman peak shift and the linewidth of light-emitting porous silicon. J. Appl. Phys., 1994. 75(1): p. 651-653. [34]Rong-ping Wang, et al., Raman spectral study of silicon nanowires: High-order scattering and phonon confinement effects. Phys. Rev. B, 2000. 61: p. 16827-16832. [35]M. Yoshikawa, et al., Raman scattering from nanometer-sized diamond. Appl. Phys. Lett., 1995. 67: p. 694-696. [36]Ke-Rong Zhu, et al., Size and phonon-confinement effects on low-frequency Raman mode of anatase TiO2 nanocrystal. Phys. Lett. A, 2005. 340(1-4): p. 220–227. [37]Begum N, et al., Phonon Confinement Effect in III-V Nanowires, P. Prete, Editor. 2010: Italy. [38]Akhilesh K. Arora, et al., Raman spectroscopy of optical phonon confinement in nanostructured materials. J. Raman Spectrosc., 2007. 38: p. 604-617. [39]Akhilesh K. Arora, M. Rajalakshmi, and T.R. Ravindran, Phonon Confinement in Nanostructured Materials. Encyclopedia of Nanoscience and Nanotechnology, ed. H.S. Nalwa. Vol. 8. 2004: American Scientific Publishers. [40]D. Bersani, P. P. Lottici, and X.-Z. Ding, Phonon confinement effects in the Raman scattering by TiO2 nanocrystals. Appl. Phys. Lett., 1998. 72: p. 73-75. [41]N. Fukata, et al., Phonon confinement effect of silicon nanowires synthesized by laser ablation. Appl. Phys. Lett., 2005. 86: p. 213112. [42]Bibo Li, Dapeng Yu, and S.-L. Zhang, Raman spectral study of silicon nanowires. Phys. Rev. B, 1999. 59(3): p. 1645-1648. [43]M. Rajalakshmi, et al., Optical phonon confinement in zinc oxide nanoparticles. J. Appl. Phys., 2000. 87: p. 2445-2448. [44]K.W. Adu, et al., Raman scattering as a probe of phonon confinement and surface optical modes in semiconducting nanowires. Appl. Phys. A, 2006. 85(3): p. 287-297. [45]A. Ashrafi and C. Jagadish, Review of zincblende ZnO: Stability of metastable ZnO phases. J. Appl. Phys., 2007. 102: p. 071101. [46]Michael A. Stroscio and M. Dutta, Phonons in Nanostructures. 1 ed. 2001: Cambridge University Press.
Chapter 2 [1]C. Soci, et al., ZnO Nanowire UV Photodetectors with High Internal Gain. Nanoletters, 2007. 7(4): p. 1003-1009. [2]R. P. Wang, G. Xu, and P. Jin, Size dependence of electron-phonon coupling in ZnO nanowires. Phys. Lett. B, 2004. 69: p. 113303. [3]H. Y. Shih, et al., Size-dependent photoelastic effect in ZnO nanorods. Appl. Phys. Lett., 2009. 94: p. 021908. [4]M. H. Huang, et al., Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport. Adv. Mater., 2001. 13(2): p. 113-116. [5]H Y Dang, J Wang, and S.S. Fan, The synthesis of metal oxide nanowires by directly heating metal samples in appropriate oxygen atmospheres. Nanotechnology, 2003. 14(7): p. 738-741. [6]Zhang Bin, et al., Raman scattering and photoluminescence of Fe-doped ZnO nanocantilever arrays. Chin. Sci. Bull., 2008. 53(11): p. 1639-1643. [7]Y.W. Heo, et al., ZnO nanowire growth and devices. Mater. Sci. Eng., R, 2004. 47(1-2): p. 1-47. [8]M.J. Zheng, et al., Fabrication and optical properties of large-scaleuniform zinc oxide nanowire arrays by one-step electrochemical deposition technique. Chem. Phys. Lett., 2002. 363(1-2): p. 123-128. [9]Michael H. Huang, et al., Room-Temperature Ultraviolet Nanowire Nanolasers. Science, 2001. 292(8): p. 1897-1899. [10]Hou Tee Ng, et al., Optical properties of single-crystalline ZnO nanowires on m-sapphire. Appl. Phys. Lett., 2003. 82(13): p. 2023-2025. [11]Peidong Yang, et al., Controlled growth of ZnO nanowires and their optical properties. Adv. Funct. Mater., 2002. 12(5): p. 323-331. [12]Q. Wan, et al., Room-temperature hydrogen storage characteristics of ZnO nanowires. Appl. Phys. Lett., 2004. 84(124): p. 124. [13]Xiaohua Wang, Jian Zhang, and Z. Zhu, Ammonia sensing characteristics of ZnO nanowires studied by quartz crystal microbalance. Appl. Surf. Sci., 2006. 15: p. 2404-2411. [14]Pai-Chun Chang, et al., ZnO Nanowires Synthesized by Vapor Trapping CVD Method. Chem. Mater., 2004. 16: p. 5133-5137. [15]D. H. Fan, et al., Integration of ZnO Nanotubes with Well-Ordered Nanorods through Two-Step Thermal Evaporation Approach. J. Phys. Chem. C, 2007. 111(26): p. 9116-9121. [16]Russ, J.C., Fundamentals of energy dispersive x-ray analysis. 1984: Butterworths. [17]Reimer, L., Transmission electron microscopy: physics of image formation and microanalysis. 4 ed. Springer Series in Optical Sciences. 1997: Springer. [18]Ruchita S. Das and Y.K. Agrawal, Raman spectroscopy: Recent advancements, techniques and applications. Vib. Spectrosc, 2011. 57: p. 163-176. [19]John K. Stevens, Linda R. Mills, and J.E. Trogadis, Three-Dimensional Confocal Microscopy: Volume Investigation of Biological Systems. 1 ed, ed. Dennis E. Buetow, et al. 1994: Academic Press.
Chapter 3 [1]Y.H. Leung, et al., Zinc oxide ribbon and comb structures: synthesis and optical properties. Chem. Phys. Lett., 2004. 394(4-6): p. 452–457. [2]Hongbo Huang, et al., Controllable Assembly of Aligned ZnO Nanowires/Belts Arrays. J. Phys. Chem. B, 2005. 109(44): p. 20746-20750. [3]Jae-Hwan Park, et al., Ultrawide ZnO nanosheets. J. Mater. Chem., 2003. 14: p. 35-36. [4]Hadis Morkoç and Ü. Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology. 1 ed. 2009: Wiley-VCH. 477. [5]P. K. Giri, et al., Correlation between microstructure and optical properties of ZnO nanoparticles synthesized by ball milling. J. Appl. Phys., 2007. 102(9): p. 093515. [6]Shao-Min Zhou, X.-H.Z., Xiang-Min Meng, Xia Fan, Shi-Kang Wu, Shuit-Tong Lee, Preparation and photoluminescence of Sc-doped ZnO nanowires. Physica E: Low-dimensional Systems and Nanostructures, 2005. 25: p. 587-591. [7]Vayssieres, L., Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions. Adv. Mater., 2003. 15(5): p. 464-466. [8]C. Geng, et al., Well-Aligned ZnO Nanowire Arrays Fabricated on Silicon Substrates. Adv. Funct. Mater., 2004. 14(6): p. 589-594. [9]M.J. Zheng, et al., Fabrication and optical properties of large-scaleuniform zinc oxide nanowire arrays by one-step electrochemical deposition technique. Chem. Phys. Lett., 2002. 363(1-2): p. 123-128. [10]S. Ren, et al., Catalyst-free synthesis of ZnO nanowire arrays on zinc substrate by low temperature thermal oxidation. Mater. Lett., 2007. 61(3): p. 666-670. [11]Simas Rackauskas, et al., Mechanistic investigation of ZnO nanowire growth. Appl. Phys. Lett., 2009. 95: p. 183114. [12]Po-Hsun Shih, et al., Tuning the dimensionality of ZnO nanowires through thermal treatment: An investigation of growth mechanism. Nanoscale Res. Lett., 2012. 7: p. 354. [13]Hong Jin Fan, et al., Two-dimensional dendritic ZnO nanowires from oxidation of Zn microcrystals. Appl. Phys. Lett., 2004. 85: p. 4142. [14]Albert C. Thompson, et al., X-ray Data Booklet. 2 ed, ed. Albert C. Thompson and D. Vaughan. 2001, California. [15]C-L Cheng, et al., Direct observation of short-circuit diffusion during the formation of a single cupric oxide nanowire. Nanotechnology, 2007. 18(24): p. 245604. [16]Ashish C. Gandhi, et al., In Situ Confocal Raman Mapping Study of a Single Ti-Assisted ZnO Nanowire. Nanoscale Res. Lett., 2010. 5(3): p. 581-586. [17]R. Herchl, N.N.K., T. Homma, and W.W. Smeltzer, Short-circuit diffusion in the growth of nickel oxide scales on nickel crystal faces. Oxid. Met., 1972. 4(1): p. 35-49. [18]Metselaar, R., Diffusion in solids. Part I : Introduction to the theory of diffusion. J. Mater. Ed., 1984. 6(1-2): p. 229. [19]Feifei Gao, et al., Photoelectric properties of nano-ZnO fabricated in mesoporous silica film. Mater. Lett., 2007. 61(14-15): p. 3179-3184. [20]Gregory W. Tomlins, Jules L. Routbort, and T.O. Mason, Zinc self-diffusion, electrical properties, and defect structure of undoped, single crystal zinc oxide. J. Appl. Phys. , 2000. 87: p. 117. [21]Kofstad, P., Nonstoichiometry, diffusion, and electrical conductivity in binary metal oxides. 1972, New York: Wiley [22]A.M. Brass and A. Chanfreau, Accelerated diffusion of hydrogen along grain boundaries in nickel. Acta Mater., 1996. 44(9): p. 3823-3831.
Chapter 4 [1]S. Bratos and E. Marechal, Raman Study of Liquids. I. Theory of the Raman Spectra of Diatomic Molecules in Inert Solutions. Phys. Rev. A, 1971. 4(3): p. 1078-1092. [2]F. J. Bartoli and T.A. Litovitz, Analysis of Orientational Broadening of Raman Line Shapes. J. Chem. Phys., 1972. 56(1): p. 404. [3]Ramon Cuscó, E.A.-L., Jordi Ibáñez, and L. Artús, Temperature dependence of Raman scattering in ZnO. Phys. Rev. B, 2007. 75: p. 165202. [4]T. C. Damen, S. P. S. Porto, and B. Tell, Raman Effect in Zinc Oxide. Phys. Rev., 1966. 142(2): p. 570-574. [5]Sanjeev K. Gupta, et al., Titanium dioxide synthesized using titanium chloride: size effect study using Raman spectroscopy and photoluminescence. J. Raman Spectrosc., 2010. 41(3): p. 350-355. [6]Li-li Yang, et al., Photoluminescence and Raman analysis of ZnO nanowires deposited on Si(1 0 0) via vapor–liquid–solid process. Physica E: Low-dimensional Systems and Nanostructures, 2008. 40(4): p. 920-923. [7]Ji Nan Zeng, et al., Effect of deposition conditions on optical and electrical properties of ZnO films prepared by pulsed laser deposition. Appl. Surf. Sci., 2002. 197-198: p. 362-367. [8]A K Pradhan, et al., Structural and spectroscopic characteristics of ZnO and ZnO:Er3+ nanostructures. J. Phys.: Condens. Matter 2004. 16: p. 7123. [9]J. Alaria, et al., Pure paramagnetic behavior in Mn-doped ZnO semiconductors. J. Appl. Phys. , 2006. 99: p. 08M118. [10]M. Rajalakshmi, et al., Optical phonon confinement in zinc oxide nanoparticles. J. Appl. Phys., 2000. 87: p. 2445-2448. [11]Rong-ping Wang, et al., Raman spectral study of silicon nanowires: High-order scattering and phonon confinement effects. Phys. Rev. B, 2000. 61: p. 16827-16832. [12]K.W. Adu, et al., Raman scattering as a probe of phonon confinement and surface optical modes in semiconducting nanowires. Appl. Phys. A, 2006. 85(3): p. 287-297. [13]Rayapati Venugopal, et al., Surface-Enhanced Raman Scattering and Polarized Photoluminescence from Catalytically Grown CdSe Nanobelts and Sheets. J. Am. Chem. Soc., 2005. 127(33): p. 11262-11268. [14]Igor Kosacki, et al., Raman scattering and lattice defects in nanocrystalline CeO2 thin films. Solid State Ionics, 2002. 149(1-2): p. 99-105. [15]M. Yoshikawa, et al., Raman scattering from nanometer-sized diamond. Appl. Phys. Lett., 1995. 67: p. 694-696. [16]C. Y. Xu, P. X. Zhang, and L. Yan, Blue shift of Raman peak from coated TiO2 nanoparticles. J. Raman Spectrosc., 2001. 32(10): p. 862-865. [17]N. Fukata, et al., Phonon confinement effect of silicon nanowires synthesized by laser ablation. Appl. Phys. Lett., 2005. 86: p. 213112. [18]Min Yang, et al., Study of the Raman peak shift and the linewidth of light-emitting porous silicon. J. Appl. Phys., 1994. 75(1): p. 651-653. [19]Begum N, et al., Phonon Confinement Effect in III-V Nanowires, P. Prete, Editor. 2010: Italy. [20]C-L Cheng, et al., Direct observation of short-circuit diffusion during the formation of a single cupric oxide nanowire. Nanotechnology, 2007. 18(24): p. 245604.
|