跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/06 06:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:施伯勳
研究生(外文):Po-Hsun Shih
論文名稱:氧化鋅奈米線之短程擴散與聲子侷限效應研究
論文名稱(外文):Short-circuit diffusion and phonon confinement effect in ZnO nanowires
指導教授:吳勝允
指導教授(外文):Sheng-Yun Wu
學位類別:博士
校院名稱:國立東華大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
論文頁數:99
中文關鍵詞:氧化鋅奈米線短程擴散聲子侷限
外文關鍵詞:ZnOnanowireshort-circuit diffusionphonon confinement
相關次數:
  • 被引用被引用:0
  • 點閱點閱:337
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在探討一維和多維氧化鋅奈米線的成長機制與單根奈米線上的聲子侷限效應。氧化鋅奈米線係利用鈦輔助化學氣相沉積法製作,成長溫度範圍在攝氏四百度到七百度之間。氧化鋅奈米線的尺度與維度可經由改變退火溫度而調控之。氧化鋅奈米線平均直徑為33.2奈米至191.5奈米,其平均值隨退火溫度增加而上升。在退火溫度攝氏五百度以下,只能在樣品表面上發現一維氧化鋅奈米結構;而高於攝氏五百度,則有三維奈米線成長其上。晶格結構分析結果顯示,氧化鋅奈米線為烏綵六方晶系結構,空間群為P63mc,成長方向為[110]。氧化鋅奈米線的成長機制可歸因於短程擴散機制。鋅原子在氧化鋅薄膜的擴散情形可用二維能量分佈光譜技術描繪。擴散模型則用於計算不同樣品間的擴散活化能值,結果顯示活化能值約介於晶格擴散活化能值的0.26至0.35倍,顯示氧化鋅奈米線成長係藉由晶粒邊界、錯位和缺陷等短程擴散路徑。單根氧化鋅奈米線的拉曼光譜可藉由共軛聚焦拉曼光譜儀沿著成長方向逐點掃描,而拉曼譜線可由Viogt方程式擬合。與缺陷相關的E1-LO模的出現證實奈米線底部存在混合態。繞射峰的紅移可歸因於聲子侷限效應,而藍移則歸因於鋅氧缺陷態、尺度效應與應力效應。聲子侷限模型則用來探測不同位置的相關長度。藉由擬合E2H模的譜線,以計算奈米線上不同位置的缺陷平均距離,擬合結果顯示在高溫下成長的樣品具有較佳的結晶性。

The growth mechanism and the phonon confinement effect in one-dimensional and multi-dimensional ZnO nanowires are investigated. The ZnO nanowires were fabricated by a Ti-assisted chemical vapor deposition method without any catalyst in a temperature range of 400-700 ℃. The mean diameter ranging from 33.2 to 191.5 nm increased with the increasing temperature. The dimensionality can be controlled by adjusting the annealing temperatures. Below 500 ℃, only one-dimensional ZnO nanowires can be found on the sample surface, and, above it, three-dimensional ZnO nanowires were able to be grown. ZnO nanowires have a hexagonal structure with a space group of P63mc and the [110] growth direction. The formation of ZnO nanowires was attributed to the short-circuit diffusion. Energy dispersive x-ray spectroscopic mapping technique was used to depict the diffusion of zinc atoms through ZnOx film from the zinc base to the film surface. A diffusion model was utilized to calculate the activation energy of the diffusion for various samples. The result shows that the activation energy is 0.26-0.35 times the activation energy of ZnO lattice diffusion, revealing that the growth of ZnO nanowires was related to the diffusion goes through the grain boundaries or sub-boundaries and then forms ZnO nanowires. The Raman spectra along the growth direction of a single ZnO nanowire have been characterized by Confocal Raman spectroscopy. The Raman intensity can be described by a multi-voigt function. The appearance of a defective state of the E1-LO mode proved a mixed state in the bottom region of the ZnO nanowires. The downshift of the Raman scattering peak can be interpreted by the phonon confinement effect while the upshift can be attributed to zinc interstitials, oxygen vacancies, the size effect and the strain effect. A phonon confinement model was utilized to obtain the correlation length by fitting the Raman curves of the E2H mode in various positions. The result shows that ZnO nanowires fabricated at high temperatures have a high crystallinity.
誌謝 i
摘要 ii
Abstract iii
Contents v
List of figures vi
List of tables x
Chapter 1 Introduction 1
1-1 Background and motivation 1
1-2 Short-circuit diffusion 5
1-3 Theory of phonon confinement 9
1-4 Properties of ZnO 12
Chapter 2 Synthesis and Experiments 19
2-1 Synthesis methods 19
2-2 Experiments 21
2-3 Measurement instruments 25
2-3-1 Field-emission scanning electron microscopy 25
2-3-2 Energy dispersive X-ray spectroscopy 26
2-3-3 Transmission electron microscopy 28
2-3-4 Confocal Raman spectroscopy 29
Chapter 3 Growth mechanism 35
3-1 Morphology analysis of ZnO nanowires 35
3-2 Crystal structure analysis of ZnO nanowires 40
3-3 EDS Line scan 47
3-4 Two dimensional EDS mapping 57
Chapter 4 Phonon confinement effect 71
4-1 Raman mapping 71
4-2 Analysis of the E2 mode 84
4-3 Correlation length 90
Chapter 5 Conclusions 99

Chapter 1
[1]Anderson Janotti and C.G.V.d. Walle, Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys., 2009. 72: p. 126501.
[2]Hadis Morkoç and Ü. Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology. 1 ed. 2009: Wiley-VCH. 477.
[3]H. Y. Shih, et al., Size-dependent photoelastic effect in ZnO nanorods. Appl. Phys. Lett., 2009. 94: p. 021908.
[4]Michael H. Huang, et al., Room-Temperature Ultraviolet Nanowire Nanolasers. Science, 2001. 292(8): p. 1897-1899.
[5]Y.W. Heo, et al., ZnO nanowire growth and devices. Mater. Sci. Eng., R, 2004. 47(1-2): p. 1-47.
[6]R. P. Wang, G. Xu, and P. Jin, Size dependence of electron-phonon coupling in ZnO nanowires. Phys. Lett. B, 2004. 69: p. 113303.
[7]H Y Dang, J Wang, and S.S. Fan, The synthesis of metal oxide nanowires by directly heating metal samples in appropriate oxygen atmospheres. Nanotechnology, 2003. 14(7): p. 738-741.
[8]Zhang Bin, et al., Raman scattering and photoluminescence of Fe-doped ZnO nanocantilever arrays. Chin. Sci. Bull., 2008. 53(11): p. 1639-1643.
[9]Soumitra Kar, B.N.P., Subhadra Chaudhuri, and Dipankar Chakravorty, One-Dimensional ZnO Nanostructure Arrays:  Synthesis and Characterization. J. Phys. Chem. B, 2006. 110(10): p. 4605-4611.
[10]Pu Xian Gao and Z.L. Wang, Mesoporous Polyhedral Cages and Shells Formed by Textured Self-Assembly of ZnO Nanocrystals. JACS, 2003. 125(37): p. 11299-11305.
[11]Matthew J. Bierman and S. Jin, Potential applications of hierarchical branching nanowires in solar energy conversion. Energy Environ. Sci., 2009. 2(10): p. 1050-1059.
[12]J. Q. Hu, et al., Thermal Reduction Route to the Fabrication of Coaxial Zn/ZnO Nanocables and ZnO Nanotubes. Chem. Mater., 2003. 15(1): p. 305-308.
[13]M.H. Chou, et al., ConfocalRamanspectroscopicmappingstudiesonasingle CuO nanowire. Applied Surface Science, 2008. 254(23): p. 7539–7543.
[14]Mehrer, H., Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-controlled Processes. Springer Series in Solid-State Sciences. Vol. 155. 2007, New York: Springer.
[15]Davis, J.R., Heat-resistant materials. 2 ed. 1997: ASM International.
[16]G. Erdélyi, D.L. Beke, and I.A. Szabó, Study of phenomena occurring at solid/solid interfaces Investigation of interface diffusion and segregation by the radiotracer technique, in Interface Science and Technology. 2004. p. 163-214.
[17]B S Murty, et al., Unique Properties of Nanomaterials, in Textbook of Nanoscience and Nanotechnology. 2013, Springer Berlin Heidelberg. p. 29-65.
[18]C-L Cheng, et al., Direct observation of short-circuit diffusion during the formation of a single cupric oxide nanowire. Nanotechnology, 2007. 18(24): p. 245604.
[19]Wagner, C., Contribution to the Theory of Oxidation. Z. Phys. Chem.B, 1933. 21: p. 25.
[20]Shi-Bo Li, et al., The origin of driving force for the formation of Sn whiskers at room temperature. J. Mater. Res., 2007. 22(11): p. 3226-3232.
[21]Lu Yuan, et al., The origin of hematite nanowire growth during the thermal oxidation of iron. Mater. Sci. Eng., B, 2012. 177: p. 327-336.
[22]C.H. Xu, C.H. Woo, and S.Q. Shi, Formation of CuO nanowires on Cu foil. Chem. Phys. Lett., 2004. 399: p. 62-66.
[23]Lu Yuan and G. Zhou, Enhanced CuO Nanowire Formation by Thermal Oxidation of Roughened Copper. J. Electrochem. Soc., 2012. 159(4): p. C205-C209.
[24]Xuyang Li, et al., Synthesis of cupric oxide nanowires on spherical surface by thermal oxidation method. Mater. Lett., 2013. 96: p. 192-194.
[25]Benjamin J. Hansen, et al., Short-circuit diffusion growth of long bi-crystal CuO nanowires. Chem. Phys. Lett., 2011. 504: p. 41-45.
[26]Ashish C. Gandhi, et al., In Situ Confocal Raman Mapping Study of a Single Ti-Assisted ZnO Nanowire. Nanoscale Res. Lett., 2010. 5(3): p. 581-586.
[27]Liang Wang, Fitih M. Mohammed, and I. Adesida, Dislocation-induced nonuniform interfacial reactions of Ti/Al/Mo/Au ohmic contacts on AlGaN/GaN heterostructure. Appl. Phys. Lett., 2005. 87: p. 141915.
[28]Firat G€uder, et al., Toward Discrete Multilayered Composite Structures: Do Hollow Networks Form in a Polycrystalline Infinite Nanoplane by the Kirkendall Effect? Chem. Mater., 2011. 23: p. 4445-4451.
[29]Kittel, C., Introduction to Solid State Physics. 8 ed. 2005: John Wiley & Sons, Inc. 680.
[30]Giuseppe Faraci, et al., Modified Raman confinement model for Si nanocrystals. Phys. Rev. B, 2006. 73(3): p. 033307.
[31]W F Zhang, et al., Raman scattering study on anatase TiO2 nanocrystals. J. Phys. D:Appl. Phys., 2000. 33: p. 912-916.
[32]J. B. Wang, et al., Raman study for E2 phonon of ZnO in Zn1-xMnxO nanoparticles. J. Appl. Phys., 2005. 97: p. 086105.
[33]Min Yang, et al., Study of the Raman peak shift and the linewidth of light-emitting porous silicon. J. Appl. Phys., 1994. 75(1): p. 651-653.
[34]Rong-ping Wang, et al., Raman spectral study of silicon nanowires: High-order scattering and phonon confinement effects. Phys. Rev. B, 2000. 61: p. 16827-16832.
[35]M. Yoshikawa, et al., Raman scattering from nanometer-sized diamond. Appl. Phys. Lett., 1995. 67: p. 694-696.
[36]Ke-Rong Zhu, et al., Size and phonon-confinement effects on low-frequency Raman mode of anatase TiO2 nanocrystal. Phys. Lett. A, 2005. 340(1-4): p. 220–227.
[37]Begum N, et al., Phonon Confinement Effect in III-V Nanowires, P. Prete, Editor. 2010: Italy.
[38]Akhilesh K. Arora, et al., Raman spectroscopy of optical phonon confinement in nanostructured materials. J. Raman Spectrosc., 2007. 38: p. 604-617.
[39]Akhilesh K. Arora, M. Rajalakshmi, and T.R. Ravindran, Phonon Confinement in Nanostructured Materials. Encyclopedia of Nanoscience and Nanotechnology, ed. H.S. Nalwa. Vol. 8. 2004: American Scientific Publishers.
[40]D. Bersani, P. P. Lottici, and X.-Z. Ding, Phonon confinement effects in the Raman scattering by TiO2 nanocrystals. Appl. Phys. Lett., 1998. 72: p. 73-75.
[41]N. Fukata, et al., Phonon confinement effect of silicon nanowires synthesized by laser ablation. Appl. Phys. Lett., 2005. 86: p. 213112.
[42]Bibo Li, Dapeng Yu, and S.-L. Zhang, Raman spectral study of silicon nanowires. Phys. Rev. B, 1999. 59(3): p. 1645-1648.
[43]M. Rajalakshmi, et al., Optical phonon confinement in zinc oxide nanoparticles. J. Appl. Phys., 2000. 87: p. 2445-2448.
[44]K.W. Adu, et al., Raman scattering as a probe of phonon confinement and surface optical modes in semiconducting nanowires. Appl. Phys. A, 2006. 85(3): p. 287-297.
[45]A. Ashrafi and C. Jagadish, Review of zincblende ZnO: Stability of metastable ZnO phases. J. Appl. Phys., 2007. 102: p. 071101.
[46]Michael A. Stroscio and M. Dutta, Phonons in Nanostructures. 1 ed. 2001: Cambridge University Press.

Chapter 2
[1]C. Soci, et al., ZnO Nanowire UV Photodetectors with High Internal Gain. Nanoletters, 2007. 7(4): p. 1003-1009.
[2]R. P. Wang, G. Xu, and P. Jin, Size dependence of electron-phonon coupling in ZnO nanowires. Phys. Lett. B, 2004. 69: p. 113303.
[3]H. Y. Shih, et al., Size-dependent photoelastic effect in ZnO nanorods. Appl. Phys. Lett., 2009. 94: p. 021908.
[4]M. H. Huang, et al., Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport. Adv. Mater., 2001. 13(2): p. 113-116.
[5]H Y Dang, J Wang, and S.S. Fan, The synthesis of metal oxide nanowires by directly heating metal samples in appropriate oxygen atmospheres. Nanotechnology, 2003. 14(7): p. 738-741.
[6]Zhang Bin, et al., Raman scattering and photoluminescence of Fe-doped ZnO nanocantilever arrays. Chin. Sci. Bull., 2008. 53(11): p. 1639-1643.
[7]Y.W. Heo, et al., ZnO nanowire growth and devices. Mater. Sci. Eng., R, 2004. 47(1-2): p. 1-47.
[8]M.J. Zheng, et al., Fabrication and optical properties of large-scaleuniform zinc oxide nanowire arrays by one-step electrochemical deposition technique. Chem. Phys. Lett., 2002. 363(1-2): p. 123-128.
[9]Michael H. Huang, et al., Room-Temperature Ultraviolet Nanowire Nanolasers. Science, 2001. 292(8): p. 1897-1899.
[10]Hou Tee Ng, et al., Optical properties of single-crystalline ZnO nanowires on m-sapphire. Appl. Phys. Lett., 2003. 82(13): p. 2023-2025.
[11]Peidong Yang, et al., Controlled growth of ZnO nanowires and their optical properties. Adv. Funct. Mater., 2002. 12(5): p. 323-331.
[12]Q. Wan, et al., Room-temperature hydrogen storage characteristics of ZnO nanowires. Appl. Phys. Lett., 2004. 84(124): p. 124.
[13]Xiaohua Wang, Jian Zhang, and Z. Zhu, Ammonia sensing characteristics of ZnO nanowires studied by quartz crystal microbalance. Appl. Surf. Sci., 2006. 15: p. 2404-2411.
[14]Pai-Chun Chang, et al., ZnO Nanowires Synthesized by Vapor Trapping CVD Method. Chem. Mater., 2004. 16: p. 5133-5137.
[15]D. H. Fan, et al., Integration of ZnO Nanotubes with Well-Ordered Nanorods through Two-Step Thermal Evaporation Approach. J. Phys. Chem. C, 2007. 111(26): p. 9116-9121.
[16]Russ, J.C., Fundamentals of energy dispersive x-ray analysis. 1984: Butterworths.
[17]Reimer, L., Transmission electron microscopy: physics of image formation and microanalysis. 4 ed. Springer Series in Optical Sciences. 1997: Springer.
[18]Ruchita S. Das and Y.K. Agrawal, Raman spectroscopy: Recent advancements, techniques and applications. Vib. Spectrosc, 2011. 57: p. 163-176.
[19]John K. Stevens, Linda R. Mills, and J.E. Trogadis, Three-Dimensional Confocal Microscopy: Volume Investigation of Biological Systems. 1 ed, ed. Dennis E. Buetow, et al. 1994: Academic Press.

Chapter 3
[1]Y.H. Leung, et al., Zinc oxide ribbon and comb structures: synthesis and optical properties. Chem. Phys. Lett., 2004. 394(4-6): p. 452–457.
[2]Hongbo Huang, et al., Controllable Assembly of Aligned ZnO Nanowires/Belts Arrays. J. Phys. Chem. B, 2005. 109(44): p. 20746-20750.
[3]Jae-Hwan Park, et al., Ultrawide ZnO nanosheets. J. Mater. Chem., 2003. 14: p. 35-36.
[4]Hadis Morkoç and Ü. Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology. 1 ed. 2009: Wiley-VCH. 477.
[5]P. K. Giri, et al., Correlation between microstructure and optical properties of ZnO nanoparticles synthesized by ball milling. J. Appl. Phys., 2007. 102(9): p. 093515.
[6]Shao-Min Zhou, X.-H.Z., Xiang-Min Meng, Xia Fan, Shi-Kang Wu, Shuit-Tong Lee, Preparation and photoluminescence of Sc-doped ZnO nanowires. Physica E: Low-dimensional Systems and Nanostructures, 2005. 25: p. 587-591.
[7]Vayssieres, L., Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions. Adv. Mater., 2003. 15(5): p. 464-466.
[8]C. Geng, et al., Well-Aligned ZnO Nanowire Arrays Fabricated on Silicon Substrates. Adv. Funct. Mater., 2004. 14(6): p. 589-594.
[9]M.J. Zheng, et al., Fabrication and optical properties of large-scaleuniform zinc oxide nanowire arrays by one-step electrochemical deposition technique. Chem. Phys. Lett., 2002. 363(1-2): p. 123-128.
[10]S. Ren, et al., Catalyst-free synthesis of ZnO nanowire arrays on zinc substrate by low temperature thermal oxidation. Mater. Lett., 2007. 61(3): p. 666-670.
[11]Simas Rackauskas, et al., Mechanistic investigation of ZnO nanowire growth. Appl. Phys. Lett., 2009. 95: p. 183114.
[12]Po-Hsun Shih, et al., Tuning the dimensionality of ZnO nanowires through thermal treatment: An investigation of growth mechanism. Nanoscale Res. Lett., 2012. 7: p. 354.
[13]Hong Jin Fan, et al., Two-dimensional dendritic ZnO nanowires from oxidation of Zn microcrystals. Appl. Phys. Lett., 2004. 85: p. 4142.
[14]Albert C. Thompson, et al., X-ray Data Booklet. 2 ed, ed. Albert C. Thompson and D. Vaughan. 2001, California.
[15]C-L Cheng, et al., Direct observation of short-circuit diffusion during the formation of a single cupric oxide nanowire. Nanotechnology, 2007. 18(24): p. 245604.
[16]Ashish C. Gandhi, et al., In Situ Confocal Raman Mapping Study of a Single Ti-Assisted ZnO Nanowire. Nanoscale Res. Lett., 2010. 5(3): p. 581-586.
[17]R. Herchl, N.N.K., T. Homma, and W.W. Smeltzer, Short-circuit diffusion in the growth of nickel oxide scales on nickel crystal faces. Oxid. Met., 1972. 4(1): p. 35-49.
[18]Metselaar, R., Diffusion in solids. Part I : Introduction to the theory of diffusion. J. Mater. Ed., 1984. 6(1-2): p. 229.
[19]Feifei Gao, et al., Photoelectric properties of nano-ZnO fabricated in mesoporous silica film. Mater. Lett., 2007. 61(14-15): p. 3179-3184.
[20]Gregory W. Tomlins, Jules L. Routbort, and T.O. Mason, Zinc self-diffusion, electrical properties, and defect structure of undoped, single crystal zinc oxide. J. Appl. Phys. , 2000. 87: p. 117.
[21]Kofstad, P., Nonstoichiometry, diffusion, and electrical conductivity in binary metal oxides. 1972, New York: Wiley
[22]A.M. Brass and A. Chanfreau, Accelerated diffusion of hydrogen along grain boundaries in nickel. Acta Mater., 1996. 44(9): p. 3823-3831.

Chapter 4
[1]S. Bratos and E. Marechal, Raman Study of Liquids. I. Theory of the Raman Spectra of Diatomic Molecules in Inert Solutions. Phys. Rev. A, 1971. 4(3): p. 1078-1092.
[2]F. J. Bartoli and T.A. Litovitz, Analysis of Orientational Broadening of Raman Line Shapes. J. Chem. Phys., 1972. 56(1): p. 404.
[3]Ramon Cuscó, E.A.-L., Jordi Ibáñez, and L. Artús, Temperature dependence of Raman scattering in ZnO. Phys. Rev. B, 2007. 75: p. 165202.
[4]T. C. Damen, S. P. S. Porto, and B. Tell, Raman Effect in Zinc Oxide. Phys. Rev., 1966. 142(2): p. 570-574.
[5]Sanjeev K. Gupta, et al., Titanium dioxide synthesized using titanium chloride: size effect study using Raman spectroscopy and photoluminescence. J. Raman Spectrosc., 2010. 41(3): p. 350-355.
[6]Li-li Yang, et al., Photoluminescence and Raman analysis of ZnO nanowires deposited on Si(1 0 0) via vapor–liquid–solid process. Physica E: Low-dimensional Systems and Nanostructures, 2008. 40(4): p. 920-923.
[7]Ji Nan Zeng, et al., Effect of deposition conditions on optical and electrical properties of ZnO films prepared by pulsed laser deposition. Appl. Surf. Sci., 2002. 197-198: p. 362-367.
[8]A K Pradhan, et al., Structural and spectroscopic characteristics of ZnO and ZnO:Er3+ nanostructures. J. Phys.: Condens. Matter 2004. 16: p. 7123.
[9]J. Alaria, et al., Pure paramagnetic behavior in Mn-doped ZnO semiconductors. J. Appl. Phys. , 2006. 99: p. 08M118.
[10]M. Rajalakshmi, et al., Optical phonon confinement in zinc oxide nanoparticles. J. Appl. Phys., 2000. 87: p. 2445-2448.
[11]Rong-ping Wang, et al., Raman spectral study of silicon nanowires: High-order scattering and phonon confinement effects. Phys. Rev. B, 2000. 61: p. 16827-16832.
[12]K.W. Adu, et al., Raman scattering as a probe of phonon confinement and surface optical modes in semiconducting nanowires. Appl. Phys. A, 2006. 85(3): p. 287-297.
[13]Rayapati Venugopal, et al., Surface-Enhanced Raman Scattering and Polarized Photoluminescence from Catalytically Grown CdSe Nanobelts and Sheets. J. Am. Chem. Soc., 2005. 127(33): p. 11262-11268.
[14]Igor Kosacki, et al., Raman scattering and lattice defects in nanocrystalline CeO2 thin films. Solid State Ionics, 2002. 149(1-2): p. 99-105.
[15]M. Yoshikawa, et al., Raman scattering from nanometer-sized diamond. Appl. Phys. Lett., 1995. 67: p. 694-696.
[16]C. Y. Xu, P. X. Zhang, and L. Yan, Blue shift of Raman peak from coated TiO2 nanoparticles. J. Raman Spectrosc., 2001. 32(10): p. 862-865.
[17]N. Fukata, et al., Phonon confinement effect of silicon nanowires synthesized by laser ablation. Appl. Phys. Lett., 2005. 86: p. 213112.
[18]Min Yang, et al., Study of the Raman peak shift and the linewidth of light-emitting porous silicon. J. Appl. Phys., 1994. 75(1): p. 651-653.
[19]Begum N, et al., Phonon Confinement Effect in III-V Nanowires, P. Prete, Editor. 2010: Italy.
[20]C-L Cheng, et al., Direct observation of short-circuit diffusion during the formation of a single cupric oxide nanowire. Nanotechnology, 2007. 18(24): p. 245604.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊