跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/14 12:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳毓潔
研究生(外文):Yu-Jie Chen
論文名稱:動態訂價於宅配物流配送時段管理之研究
論文名稱(外文):A Dynamic Pricing Model for Time Slot Management in Attended Home Delivery Logistics
指導教授:陳正杰陳正杰引用關係
指導教授(外文):Cheng-Chieh Chen
學位類別:碩士
校院名稱:國立東華大學
系所名稱:運籌管理研究所
學門:商業及管理學門
學類:行銷與流通學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
論文頁數:93
中文關鍵詞:動態訂價競標宅配物流配送時段分派
外文關鍵詞:Dynamic PricingBidding MechanismAttended Home Delivery LogisticsTime Slots Allocation
相關次數:
  • 被引用被引用:2
  • 點閱點閱:573
  • 評分評分:
  • 下載下載:78
  • 收藏至我的研究室書目清單書目收藏:44
近年來,有鑑於網路科技的進步,國人的消費型態也趨於多元化。網路購物、宅配到府改變過去顧客在實體店面購物的習慣,物流體系成為企業強大的後盾,根據創市際市場研究顧問於2011年的調查中顯示「消費者可指定配送到達時段」成為宅配物流業需求興盛的原因。然而,宅配物流業目前遇到最大挑戰之一是尖離峰時段需求不均衡問題;尖峰時段配送經常出現供不應求的狀況,導致經常出現送貨時間延遲的問題,相反地,離峰時段配送卻使得業者有閒置成本問題的產生。
為結合線上競標的應用日益普及化的趨勢,本研究欲從宅配物流服務業者的角度來探討如何藉由建構動態訂價數學模型決定各開放競標時段的最佳運費標價以及最低得標價格。本研究業者的總期望收益將分別來自於價格接受者以及投標者,進而運用模擬軟體來進行競標活動之效益分析。轉移尖峰時段的需求與均衡尖離峰需求為業者首要目的;對消費者而言,不僅是以最佳運費去選取方便取貨的時段之外,亦可減少等待取貨時間。

Over the past decade, online shopping has grown in popularity with customers and grocers alike. Offering customers the choice of delivery time slots is an emerging business strategy in attended home delivery service since it has potential to increase service level and reduce the risk of delivery failure. Although offering this delivery service can provide customers more conveniences, maintaining the efficiency and profitability of this service has been recognized as one of the great challenges faced by system operators.

In this paper, we propose dynamic pricing models, with the objective of maximizing the revenue of a provider of attended home deliveries, while also shifting peak demand toward off-peak time slots, increasing the utilization of trucks, reducing the potential redelivery costs, and improving the matches between customers’ preferred delivery time/price and carriers’ desirable time slots/charge fees through a specific bidding mechanism. The models are formulated to determine the optimal posted price, the minimum acceptable bid price for each biddable time slot and the assignment of time slots to customers. The study starts from a typical dynamic pricing model with three kinds of customers (i.e. price-taker, bidders, and leave-without-pay) and then considers heterogeneous characteristics of peak and off-peak time slots. Some sensitivity analyses are presented to demonstrate that price movement is efficient in response to changed conditions such as remaining time slots and different demand rates.

致 謝...I
摘 要...Ⅲ
Abstract...Ⅵ
目 次...V
表目錄...Ⅶ
圖目錄...Ⅷ
第一章 緒論...1
1.1 研究動機與背景...1
1.2 研究目的...6
1.3 研究範圍與對象...7
1.4 研究流程與架構...10
第二章 文獻回顧...13
2.1 動態訂價...14
2.1.1定義...14
2.1.2動態訂價應用實例...16
2.1.3消費者行為特性探討...18
2.1.4動態訂價相關文獻演進...19
2.2 宅配...23
2.2.1定義...23
2.2.2宅配市場現況與面臨課題...25
2.2.3宅配相關文獻演進...28
2.3 競標...31
2.3.1競標模型中消費者特質分類...31
2.3.2競標機制介紹...33
2.3.3競標相關文獻演進...36
2.4 文獻評析...39
第三章 研究方法...43
3.1 研究課題...43
3.2 模型建構...46
3.2.1模型假設...47
3.2.2模型符號說明...50
3.2.3模型建構...51
第四章 情境模擬與實驗分析...63
4.1 韋伯分配...63
4.2 情境設計與結果分析...64
4.2.1模型Ⅰ:同質性顧客、單一配送時段但尚未考慮競標行為...64
4.2.2模型Ⅱ:異質性顧客、單一配送時段且考慮競標行為...69
4.2.3模型Ⅲ:多重類型顧客、多重配送時段且考慮競標行為...72
4.3 敏感度分析...75
4.3.1顧客到達率(λ)的影響...75
4.3.2投標者比例(β)的影響...79
4.4 管理意涵...82
第五章 結論與建議...85
5.1 結論...85
5.2 未來研究建議...87
參考文獻...90

Agatz, N., Campbell, A. M., Fleischmann, M., & Savels, M. (2008). Challenges and opportunities in attended home delivery. In The Vehicle Routing Problem: Latest Advances and New Challenges (pp. 379-396). Springer US.


Agatz, N. A., Fleischmann, M., & Van Nunen, J. A. (2008). E-fulfillment and multi-channel distribution–A review. European Journal of Operational Research,187(2), 339-356.


Asdemir, K., Jacob, V. S., & Krishnan, R. (2009). Dynamic pricing of multiple home delivery options. European Journal of Operational Research, 196(1), 246-257.


Bapna, R., Goes, P. B., & Gupta, A. (2001). Insights and analyses of online auctions. Commun. ACM, 44(11), 42-50.


Bitran, G. R., & Mondschein, S. V. (1997). Periodic pricing of seasonal products in retailing. Management Science, 43(1), 64-79..


Boyer, K. K., Hult, G. T., & Frohlich, M. (2003). An exploratory analysis of extended grocery supply chain operations and home delivery. Integrated Manufacturing Systems, 14(8), 652-663.


Boyer, K. K., Prud'homme, A. M., & Chung, W. (2009). The last mile challenge: evaluating the effects of customer density and delivery window patterns. Journal of Business Logistics, 30(1), 185-201.


Caldentey, R., & Vulcano, G. (2007). Online auction and list price revenue management. Management Science, 53(5), 795-813.


Campbell, A. M., & Savelsbergh, M. W. (2005). Decision support for consumer direct grocery initiatives. Transportation Science, 39(3), 313-327.


Campbell, A. M., & Savelsbergh, M. (2006). Incentive schemes for attended home delivery services. Transportation science, 40(3), 327-341.



Chandran, S., & Morwitz, V. G. (2005). Effects of participative pricing on consumers’ cognitions and actions: a goal theoretic perspective. Journal of Consumer Research, 32(2), 249-259.


Ding, M., Eliashberg, J., Huber, J., & Saini, R. (2005). Emotional bidders—An analytical and experimental examination of consumers' behavior in a priceline-like reverse auction. Management Science, 51(3), 352-364.


Ehmke, J. F. (2012). International Series in Operations Research and Management Science: Integration of Information and Optimization Models for Routing in City Logistics (Vol. 177). Springer.


Elmaghraby, W., & Keskinocak, P. (2003). Dynamic pricing in the presence of inventory considerations: Research overview, current practices, and future directions. Management Science, 49(10), 1287-1309.


Etzion, H., Pinker, E., & Seidmann, A. (2006). Analyzing the simultaneous use of auctions and posted prices for online selling. Manufacturing & Service Operations Management, 8(1), 68-91.


Gallego, G., & Van Ryzin, G. (1994). Optimal dynamic pricing of inventories with stochastic demand over finite horizons. Management science, 40(8), 999-1020.


Gallego, G., & Van Ryzin, G. (1997). A multiproduct dynamic pricing problem and its applications to network yield management. Operations Research, 45(1), 24-41.


Gevaers, R., Van de Voorde, E., & Vanelslander, T. (2011). Charateristics and Typology of Last-mile Logistic from an Innovation Perspective in an Urban Context. City Distribution and Urban Freight Transport: Multiple Perspectives, Edward Elgar Publishing, 56-71.


Kim, J. Y., Natter, M., & Spann, M. (2009). Pay what you want: A new participative pricing mechanism. Journal of Marketing, 73(1), 44-58.


Klemperer, P. (1999). Auction theory: A guide to the literature. Journal of economic surveys, 13(3), 227-286.



Kuo, C. W., Guo, R. S., & Wu, Y. F. (2011). Optimal pricing strategies under co-existence of price-takers and bargainers in a supply chain. Journal of the Operational Research Society, 63(7), 865-882.


Kuo, C. W., Ahn, H. S., & Aydın, G. (2011). Dynamic pricing of limited inventories when customers negotiate. Operations research, 59(4), 882-897.


Kuo, C. W., & Huang, K. L. (2012). Dynamic pricing of limited inventories for multi-generation products. European Journal of Operational Research, 217(2), 394-403.


Lee, J. S., & Szymanski, B. K. (2007). Auctions as a dynamic pricing mechanism for e-services. In Service Enterprise Integration (pp. 131-156). Springer US.


Lin, K. Y. (2006). Dynamic pricing with real-time demand learning. European Journal of Operational Research, 174(1), 522-538.


McAfee, R. P., & McMillan, J. (1987). Auctions and bidding. Journal of economic literature, 25(2), 699-738.


Netessine, S. (2006). Dynamic pricing of inventory/capacity with infrequent price changes. European Journal of Operational Research, 174(1), 553-580.


Park, M., & Regan, A. (2004). Issues in emerging home delivery operations.


Punakivi, M., & Saranen, J. (2001). Identifying the success factors in e-grocery home delivery. International Journal of Retail & Distribution Management, 29(4), 156-163.


Reinartz, W. (2002). Customizing prices in online markets. Management (www. unimib. it/symphonya), (1), 55-65.


Shen, Z. J. M., & Su, X. (2007). Customer behavior modeling in revenue management and auctions: A review and new research opportunities. Production and operations management, 16(6), 713-728.


Su, X. (2007). Intertemporal pricing with strategic customer behavior. Management Science, 53(5), 726-741.
Su, X. (2009). A model of consumer inertia with applications to dynamic pricing.Production and Operations Management, 18(4), 365-380.


Talluri, K., & Van Ryzin, G. (1998). An analysis of bid-price controls for network revenue management. Management Science, 44(11-Part-1), 1577-1593.


Talluri, K., & Van Ryzin, G. (2004). Revenue management under a general discrete choice model of consumer behavior. Management Science, 50(1), 15-33.


Weatherford, L. R., & Bodily, S. E. (1992). A taxonomy and research overview of perishable-asset revenue management: yield management, overbooking, and pricing. Operations Research, 40(5), 831-844.


Weiss, R. M., & Mehrotra, A. K. (2001). Online dynamic pricing: efficiency, equity and the future of e-commerce. Va. JL & Tech., 6, 11-17.


Zhao, W., & Zheng, Y. S. (2000). Optimal dynamic pricing for perishable assets with nonhomogeneous demand. Management science, 46(3), 375-388.


Zhao, L., Tian, P., & Li, X. (2012). Dynamic pricing in the presence of consumer inertia. Omega, 40(2), 137-148.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top