跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/07 06:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張宸綱
研究生(外文):Chen-Kang Chang
論文名稱:以互動式可能性規劃求解不確定性之 封閉式供應鏈網路設計
論文名稱(外文):An Interactive Possibilistic Programming Approach for Closed-loop Supply Chain Network Design under Uncertainty.
指導教授:吳政翰吳政翰引用關係
指導教授(外文):Gen-Han Wu
學位類別:碩士
校院名稱:國立東華大學
系所名稱:運籌管理研究所
學門:商業及管理學門
學類:行銷與流通學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
論文頁數:94
中文關鍵詞:封閉式供應鏈網路不確定性廠址選擇模糊規劃首選妥協解可能性規劃
外文關鍵詞:closed-loop supply chain networkuncertaintyfacility locationfuzzy programmingpreferred compromise solutionpossibilistic programming.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:225
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
封閉式供應鏈網路設計為結合正向物流與逆向物流的廠址選擇問題。因應社會上的環境波動與商場上之競爭激烈,回收產品重新製造販售送至顧客,以達到綠色環保及減少成本等優勢。當決策者設計此供應鏈網路時,常須面對不確定之因素,如:顧客需求數量、產品回收數量、運送成本…等不確定性參數。若不確定性參數無法準確的控制與預測,則可能造成錯誤決策,進而影響成本及營運狀況。因此,如何有效控制與準確預測不確定性參數為當今企業之重要課題。
對於封閉式供應鏈網路不確定性參數之廠址選擇模型,本研究使用兩階段互動式可能性規劃尋找首選妥協解,並與目前幾種模糊規劃方法進行比較與分析。經過實驗測試與分析,本研究所使用TH之模糊方法較其他模糊規劃方法有效率且快速取得平衡妥協解。

Closed-loop supply chain network design is a facility location problem combined with forward and reverse logistics. In order to reflect the environmental fluctuations and the market competitiveness, recycled products will be re-manufactured and sold to obtain the advantages of achieving the green environmental protection and reducing the cost. Decision makers need to consider the uncertain factors, such as the quantity of customer demand, the quantity of product recovery, the transportation cost and the others, to design the supply chain network. It may cause wrong decisions and affect the operating cost conditions if uncertain parameters cannot be accurately predicted and controlled. Therefore, how to control and predict the uncertain parameters is an important issue in nowadays business environment.
For the facility location model in a closed-loop supply chain network under uncertainty, this study uses a two-stage interactive possibilistic programming approach to obtain a preferred compromise solution and compare with current common fuzzy approaches. After computing experimental testing, we can find that this study based on TH fuzzy approach obtains more efficient balanced compromise solution than other fuzzy approaches.

誌謝 I
摘要 II
Abstract III
目錄 IV
圖目錄 VI
表目錄 VII
第一章 緒論 1
1.1研究背景 1
1.2研究動機 2
1.3研究目的 4
1.4研究流程 4
第二章 文獻探討 7
2.1逆向物流與封閉式供應鏈網路 7
2.2逆向物流與封閉式供應鏈網路相關模型 11
2.2.1確定性模型 11
2.2.2不確定性模型 14
2.3模糊數學規劃 22
2.3.1模糊集合理論 24
2.3.2兩階段互動式可能性規劃方法 26
第三章 建構數學模型 33
3.1問題敘述 33
3.2確定性參數之網路模型 34
3.3不確定性參數之網路模型 37
第四章 模型分析 43
4.1參數設定 43
4.2分析架構 45
4.3分析結果 46
4.3.1參數分析 47
4.3.2模糊方法之比較與分析 52
第五章 結論與未來展望 67
參考文獻 69
附錄一 三組Data 參數表 73
附錄二 悲觀值與樂觀值測試結果 77
附錄三 最小接受能度等級β測試結果 79
附錄四 TH方法與SO方法之γ值測試結果 81
附錄五 模糊方法測試結果 85
附錄六 LINGO 11.0程式碼 89
附錄七 參數產生程式 91

Abd El-Wahed, W. F., and Lee, S. M. (2006). Interactive fuzzy goal programming for multi-objective transportation problems. Omega, 34(2), 158-166.

Benders, J. F. (1962). Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik, 4(1), 238-252.

Fleischmann, M., Krikke, H. R., Dekker, R., and Flapper, S. D. P. (2000). A characterisation of logistics networks for product recovery.
Omega, 28(6), 653-666.

Fleischmann, M., Beullens, P., Bloemhof‐Ruwaard, J. M., and Wassenhove, L. N. (2001). The impact of product recovery on logistics network design. Production and Operations Management, 10(2), 156-173.

Gou, Q., Liang, L., Huang, Z., and Xu, C. (2008). A joint inventory model for an open-loop reverse supply chain. International Journal of Production Economics,116(1), 28-42.

Hasani, A., Zegordi, S. H., and Nikbakhsh, E. (2012). Robust closed-loop supply chain network design for perishable goods in agile manufacturing under uncertainty. International Journal of Production Research, 50(16), 4649-4669.

HO, C. J. (1989). Evaluating the impact of operating environments on MRP system nervousness. International Journal of Production Research, 27(7), 1115-1135.


Ilgin, M. A., and Gupta, S. M. (2010). Environmentally conscious manufacturing and product recovery (ECMPRO): a review of the state of the art. Journal of Environmental Management, 91(3), 563-591.

Inuiguchi, M., and Ramı́k, J. (2000). Possibilistic linear programming: a brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem. Fuzzy Sets and Systems, 111(1), 3-28.

Jayaraman, V., Guide Jr, V. D. R., and Srivastava, R. (1999). A closed-loop logistics model for remanufacturing. Journal of the Operational Research Society, 50(5), 497-508..

Lai, Y. J., and Hwang, C. L. (1992). A new approach to some possibilistic linear programming problems. Fuzzy Sets and Systems, 49(2), 121-133.

Lai, Y. J., and Hwang, C. L. (1993). Possibilistic linear programming for managing interest rate risk. Fuzzy Sets and Systems, 54(2), 135-146.

Leung, Y. (1983). A concept of a fuzzy ideal for multicriteria conflict resolution
(pp. 387-403). Springer.

Listeş, O., and Dekker, R. (2005). A stochastic approach to a case study for product recovery network design. European Journal of Operational Research,160(1), 268-287.

Min, H., Jeung Ko, H., and Seong Ko, C. (2006). A genetic algorithm approach to developing the multi-echelon reverse logistics network for product returns.Omega, 34(1), 56-69.

Mutha, A., and Pokharel, S. (2009). Strategic network design for reverse logistics and remanufacturing using new and old product modules. Computers & Industrial Engineering, 56(1), 334-346.

Pishvaee, M. S., Jolai, F., and Razmi, J. (2009). A stochastic optimization model for integrated forward/reverse logistics network design. Journal of Manufacturing Systems, 28(4), 107-114.

Pishvaee, M. S., Farahani, R. Z., and Dullaert, W. (2010). A memetic algorithm for bi-objective integrated forward/reverse logistics network design. Computers & Operations Research, 37(6), 1100-1112.

Pishvaee, M. S., and Torabi, S. A. (2010). A possibilistic programming approach for closed-loop supply chain network design under uncertainty. Fuzzy Sets and Systems, 161(20), 2668-2683.


Pishvaee, M. S., Rabbani, M., and Torabi, S. A. (2011). A robust optimization
approach to closed-loop supply chain network design under uncertainty.
Applied Mathematical Modelling, 35(2), 637-649.

Ramík, J., and Rimanek, J. (1985). Inequality relation between fuzzy numbers and its use in fuzzy optimization. Fuzzy sets and systems, 16(2), 123-138.

Salema, M. I. G., Barbosa-Povoa, A. P., and Novais, A. Q. (2007). An optimization model for the design of a capacitated multi-product reverse logistics network with uncertainty. European Journal of Operational Research,179(3), 1063-1077.

Santoso, T., Ahmed, S., Goetschalckx, M., and Shapiro, A. (2005). A stochastic programming approach for supply chain network design under uncertainty. European Journal of Operational Research, 167(1), 96-115.

Selim, H., and Ozkarahan, I. (2008). A supply chain distribution network design model: an interactive fuzzy goal programming-based solution approach. International Journal of Advanced Manufacturing Technology, 36(3-4), 401-418.

Srivastava, S. K. (2007). Green supply‐chain management: a state‐of‐the‐art literature review. International Journal of Management Reviews, 9(1), 53-80.

Stock, J. R. (1992). Reverse logistics. Council of Logistics Management.

Torabi, S. A., and Hassini, E. (2008). An interactive possibilistic programming approach for multiple objective supply chain master planning. Fuzzy Sets and Systems, 159(2), 193-214.

Vahdani, B., Razmi, J., and Tavakkoli-Moghaddam, R. (2012). Fuzzy Possibilistic Modeling for Closed Loop Recycling Collection Networks. Environmental Modeling & Assessment, 17(6), 623-637.

Werners, B. M. (1988). Aggregation models in mathematical programming. In Mathematical models for decision support, 295-305, Springer.

Xu, J., and Zhou, X. (2011). Fuzzy-like multiple objective decision making, Springer.
Zimmermann, H. J. (1978). Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems, 1(1), 45-55.

馮正民、邱裕鈞. (2004). 研究分析方法. 建都文化事業股份有限公司.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top