跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2025/01/25 18:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳友志
研究生(外文):Wu, Yu-Chih
論文名稱:SENP1於低氧下調控OCT4蛋白穩定度與睪丸胚胎癌細胞之化療感受性之角色探討
論文名稱(外文):The Role of SENP1 in OCT4 Protein Stability and Chemotherapeutic Sensitivity of Testicular Embryonal Carcinoma Cells Under Hypoxic Conditions
指導教授:沈家寧黃彥華黃彥華引用關係
指導教授(外文):Shen, Chia-NingHuang, Yen-Hua
口試委員:楊瑞彬曾啟瑞何弘能施修明林泰元黃彥華沈家寧
口試委員(外文):Yang, Ruey-BingTzeng, Chii-RueyHo, Hong-NerngShih, Hsiu-MingLing, Thai-YenHuang, Yen-HuaShen, Chia-Ning
口試日期:2012-09-21
學位類別:博士
校院名稱:國防醫學院
系所名稱:生命科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:英文
論文頁數:81
中文關鍵詞:胚胎癌低氧第一型小泛素化蛋白酶
外文關鍵詞:Embryonal carcinomaHypoxiaSENP1
相關次數:
  • 被引用被引用:0
  • 點閱點閱:249
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
一般而言,睪丸生殖細胞腫瘤對化學治療的反應良好,但若轉錄因子OCT4表現低下則會造成化療抗性與較差的預後。已知低氧會誘發睪丸生殖細胞腫瘤產生藥物抗性,然而低氧是否造成OCT4的減少與藥物抗性的機轉則尚未清楚。我們於本研究中指出,低氧會降低胚胎癌細胞中OCT4的表現程度與增加對順鉑與博來霉素的藥物抗性。此外,我們驗證了低氧透過SUMO1與SUMO1的胜肽酶SENP1對OCT4進行小泛素化修飾而促使OCT4減少。於低氧條件下,大量表現SUMO1gg(活化態之SUMO1)不僅可以增加小泛素化的OCT4,同時也降低了OCT4蛋白質的穩定性。更進一步,大量表現SENP1亦可降低上述之小泛素化的OCT4表現,進而維持OCT4表現的程度與增加對化學治療的感受性。於低氧條件下,我們發現大量表現的OCT4-K123R點突變蛋白質可以有效的抑制小泛素化的OCT4生成,證實小泛素化修飾發生於OCT4蛋白質上123位置的離胺酸。這些實驗數據顯示,低氧會降低胚胎癌細胞中OCT4的表現,並增加藥物抗性。研究揭示由低氧所降低的藥物感受性是可以被消彌的。我們同時也發現在治療具藥物抗性的睪丸生殖細胞腫瘤上,SENP1是一個具有潛力的治療標的。
Testicular germ cell tumors (TGCTs) generally respond well to chemotherapy, but tumors that express low levels of the transcription factor OCT4 are associated with chemoresistance and poor prognosis. Hypoxia is known to induce drug resistance in TGCTs, however, the mechanistic basis for reduced expression of OCT4 and drug resistance is unclear. Here we demonstrate that hypoxia reduces OCT4 levels and increases the resistance of embryonal carcinoma (EC) cells to cisplatin and bleomycin. Furthermore, we show that the loss of OCT4 expression under hypoxia can be triggered by sumoylation, which was regulated by SUMO1 and the SUMO1 peptidase SENP1. Under hypoxic conditions, overexpression of SUMO1gg (the active form of SUMO1) not only increased the level of sumoylated OCT4 (Su-OCT4), but also decreased the stability of OCT4 protein. Additionally, overexpression of SENP1 reduced the Su-OCT4 level induced by SUMO1gg overexpression, thereby maintaining OCT4 levels and enhancing chemosensitivity. Mechanistic investigations revealed that OCT4 sumoylation occurred at K123, as overexpression of an OCT4-K123R mutant effectively reduced the level of Su-OCT4 under hypoxic conditions. Taken together, our results demonstrated that hypoxia reduces OCT4 expression levels in ECs to increase drug resistance, and that these effects could be countered to ablate the suppressive effects of hypoxia on chemosensitivity. Our findings also highlight SENP1 as a potential therapeutic target for drug-resistant TGCTs.
LIST OF TABLES III
LIST OF FIGURES IV
ABBREVIATION VI
摘要 VII
Abstract VIII
Chapter 1 Introduction 1
1.1 Testicular germ cell tumor 2
1.2 Hypoxia stress and pluripotent cells 3
1.3 Sumoylation 3
1.4 Hypoxia and sumoylation 4
1.5 Sumoylation and cancer 5
1.6 Sumoylation and OCT4 6
1.7 Significance 6
Chapter 2 Materials and Methods 8
2.1 Cell culture and hypoxic treatment 9
2.2 Plasmid construction and site-directed mutagenesis 9
2.3 Short hairpin RNA and lentivirus production 10
2.4 RNA extraction, reverse transcription and quantitative real-time polymerase chain reaction 10
2.5 Immunoprecipitation and Western blot analysis 11
2.6 Immunostaining 13
2.7 Cell viability assay 14
2.8 In vitro sumoylation assay 14
2.9 Protein stability assays 15
2.10 Xenograft tumor models 16
2.11 Statistical analysis 17
Chapter 3 Results 18
3.1 Hypoxia induces drug resistance and reduces OCT4 protein in EC cells 19
3.2 Hypoxia regulates the stability of the OCT4 protein in EC cells through sumoylation 20
3.3 Sumoylation of OCT4 protein occurs at K123 21
3.4 SENP1 suppresses OCT4 sumoylation and increases OCT4 stability under hypoxic conditions 25
3.5 SENP1 increases the drug sensitivity of EC cells in hypoxic conditions 27
3.6 SENP1 enhances the drug sensitivity of EC cells by maintaining the level of the OCT4 protein 29
Chapter 4 Discussion 31
Chapter 5 References 36
Chapter 6 Tables and Figures 45
APPENDIX 81

1.Gori S, Porrozzi S, Roila F, Gatta G, De Giorgi U, Marangolo M. Germ cell tumours of the testis. Crit Rev Oncol Hematol. 2005;53:141-64.
2.Hofer MD, Browne TJ, He L, Skotheim RI, Lothe RA, Rubin MA. Identification of two molecular groups of seminomas by using expression and tissue microarrays. Clin Cancer Res. 2005;11:5722-9.
3.Honecker F, Stoop H, Mayer F, Bokemeyer C, Castrillon DH, Lau YF, et al. Germ cell lineage differentiation in non-seminomatous germ cell tumours. J Pathol. 2006;208:395-400.
4.Oosterhuis JW, Honecker F, Mayer F, Bokemeyer C, Looijenga LHJ. Pathobiological Basis of Treatment Strategies of Germ Cell Tumors
Urological Cancers. In: Waxman J, editor.: Springer London; 2005. p. 252-71.
5.Feldman DR, Bosl GJ, Sheinfeld J, Motzer RJ. Medical treatment of advanced testicular cancer. JAMA. 2008;299:672-84.
6.Timmer-Bosscha H, de Vries EG, Meijer C, Oosterhuis JW, Mulder NH. Differential effects of all-trans-retinoic acid, docosahexaenoic acid, and hexadecylphosphocholine on cisplatin-induced cytotoxicity and apoptosis in a cisplantin-sensitive and resistant human embryonal carcinoma cell line. Cancer Chemother Pharmacol. 1998;41:469-76.
7.Fischer B, Bavister BD. Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J Reprod Fertil. 1993;99:673-9.
8.Rajpert-De Meyts E. Developmental model for the pathogenesis of testicular carcinoma in situ: genetic and environmental aspects. Hum Reprod Update. 2006;12:303-23.
9.Forristal CE, Wright KL, Hanley NA, Oreffo ROC, Houghton FD. Hypoxia inducible factors regulate pluripotency and proliferation in human embryonic stem cells cultured at reduced oxygen tensions. Reproduction. 2010;139:85-97.
10.Hill RP, Marie-Egyptienne DT, Hedley DW. Cancer stem cells, hypoxia and metastasis. Semin Radiat Oncol. 2009;19:106-11.
11.Keith B, Simon MC. Hypoxia-inducible factors, stem cells, and cancer. Cell. 2007;129:465-72.
12.Niwa H, Miyazaki J, Smith AG. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet. 2000;24:372-6.
13.Scholer HR, Ruppert S, Suzuki N, Chowdhury K, Gruss P. New type of POU domain in germ line-specific protein Oct-4. Nature. 1990;344:435-9.
14.Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663-76.
15.Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007;448:313-7.
16.Yoshida Y, Takahashi K, Okita K, Ichisaka T, Yamanaka S. Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell. 2009;5:237-41.
17.Skotheim RI, Lind GE, Monni O, Nesland JM, Abeler VM, Fossa SD, et al. Differentiation of human embryonal carcinomas in vitro and in vivo reveals expression profiles relevant to normal development. Cancer Res. 2005;65:5588-98.
18.Przyborski SA, Christie VB, Hayman MW, Stewart R, Horrocks GM. Human embryonal carcinoma stem cells: models of embryonic development in humans. Stem cells and development. 2004;13:400-8.
19.Hay RT. SUMO: a history of modification. Mol Cell. 2005;18:1-12.
20.Comerford KM, Leonard MO, Karhausen J, Carey R, Colgan SP, Taylor CT. Small ubiquitin-related modifier-1 modification mediates resolution of CREB-dependent responses to hypoxia. Proc Natl Acad Sci U S A. 2003;100:986-91.
21.Carbia-Nagashima A, Gerez J, Perez-Castro C, Paez-Pereda M, Silberstein S, Stalla GK, et al. RSUME, a small RWD-containing protein, enhances SUMO conjugation and stabilizes HIF-1alpha during hypoxia. Cell. 2007;131:309-23.
22.Cheng J, Kang X, Zhang S, Yeh ETH. SUMO-specific protease 1 is essential for stabilization of HIF1alpha during hypoxia. Cell. 2007;131:584-95.
23.van Hagen M, Overmeer RM, Abolvardi SS, Vertegaal AC. RNF4 and VHL regulate the proteasomal degradation of SUMO-conjugated Hypoxia-Inducible Factor-2alpha. Nucleic Acids Res. 2010;38:1922-31.
24.Covello KL, Kehler J, Yu H, Gordan JD, Arsham AM, Hu CJ, et al. HIF-2alpha regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev. 2006;20:557-70.
25.Mo YY, Yu Y, Theodosiou E, Ee PL, Beck WT. A role for Ubc9 in tumorigenesis. Oncogene. 2005;24:2677-83.
26.Mo YY, Moschos SJ. Targeting Ubc9 for cancer therapy. Expert Opin Ther Targets. 2005;9:1203-16.
27.McDoniels-Silvers AL, Nimri CF, Stoner GD, Lubet RA, You M. Differential gene expression in human lung adenocarcinomas and squamous cell carcinomas. Clin Cancer Res. 2002;8:1127-38.
28.Kim JH, Choi HJ, Kim B, Kim MH, Lee JM, Kim IS, et al. Roles of sumoylation of a reptin chromatin-remodelling complex in cancer metastasis. Nat Cell Biol. 2006;8:631-9.
29.Cheng J, Bawa T, Lee P, Gong L, Yeh ET. Role of desumoylation in the development of prostate cancer. Neoplasia. 2006;8:667-76.
30.Jacques C, Baris O, Prunier-Mirebeau D, Savagner F, Rodien P, Rohmer V, et al. Two-step differential expression analysis reveals a new set of genes involved in thyroid oncocytic tumors. J Clin Endocrinol Metab. 2005;90:2314-20.
31.Wei F, Scholer HR, Atchison ML. Sumoylation of Oct4 enhances its stability, DNA binding, and transactivation. J Biol Chem. 2007;282:21551-60.
32.Mueller T, Mueller LP, Luetzkendorf J, Voigt W, Simon H, Schmoll HJ. Loss of Oct-3/4 expression in embryonal carcinoma cells is associated with induction of cisplatin resistance. Tumor Biol. 2006;27:71-83.
33.Mueller T, Mueller LP, Holzhausen HJ, Witthuhn R, Albers P, Schmoll HJ. Histological evidence for the existence of germ cell tumor cells showing embryonal carcinoma morphology but lacking OCT4 expression and cisplatin sensitivity. Histochem Cell Biol. 2010;134:197-204.
34.Tempe D, Piechaczyk M, Bossis G. SUMO under stress. Biochem Soc Trans. 2008;36:874-8.
35.Agbor TA, Taylor CT. SUMO, hypoxia and the regulation of metabolism. Biochem Soc Trans. 2008;36:445-8.
36.Lin DY, Huang YS, Jeng JC, Kuo HY, Chang CC, Chao TT, et al. Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors. Mol Cell. 2006;24:341-54.
37.Szot GL, Koudria P, Bluestone JA. Transplantation of pancreatic islets into the kidney capsule of diabetic mice. J Vis Exp. 2007:404.
38.Koch S, Mayer F, Honecker F, Schittenhelm M, Bokemeyer C. Efficacy of cytotoxic agents used in the treatment of testicular germ cell tumours under normoxic and hypoxic conditions in vitro. Br J Cancer. 2003;89:2133-9.
39.de Jong J, Stoop H, Dohle GR, Bangma CH, Kliffen M, van Esser JW, et al. Diagnostic value of OCT3/4 for pre-invasive and invasive testicular germ cell tumours. J Pathol. 2005;206:242-9.
40.Cheng L, Sung MT, Cossu-Rocca P, Jones TD, MacLennan GT, De Jong J, et al. OCT4: biological functions and clinical applications as a marker of germ cell neoplasia. J Pathol. 2007;211:1-9.
41.Gilbert D, Rapley E, Shipley J. Testicular germ cell tumours: predisposition genes and the male germ cell niche. Nat Rev Cancer. 2011;11:278-88.
42.Deb-Rinker P, Ly D, Jezierski A, Sikorska M, Walker PR. Sequential DNA methylation of the Nanog and Oct-4 upstream regions in human NT2 cells during neuronal differentiation. J Biol Chem. 2005;280:6257-60.
43.Das B, Tsuchida R, Malkin D, Koren G, Baruchel S, Yeger H. Hypoxia enhances tumor stemness by increasing the invasive and tumorigenic side population fraction. Stem Cells. 2008;26:1818-30.
44.Li Z, Bao S, Wu Q, Wang H, Eyler C, Sathornsumetee S, et al. Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell. 2009;15:501-13.
45.Wang XQ, Ongkeko WM, Chen L, Yang ZF, Lu P, Chen KK, et al. Octamer 4 (Oct4) Mediates Chemotherapeutic Drug Resistance in Liver Cancer Cells Through a Potential Oct4-AKT-ATP-Binding Cassette G2 Pathway. Hepatology. 2010;52:528-39.
46.Beyrouthy MJ, Garner KM, Hever MP, Freemantle SJ, Eastman A, Dmitrovsky E, et al. High DNA methyltransferase 3B expression mediates 5-aza-deoxycytidine hypersensitivity in testicular germ cell tumors. Cancer Res. 2009;69:9360-6.
47.Koster R, di Pietro A, Timmer-Bosscha H, Gibcus JH, van den Berg A, Suurmeijer AJ, et al. Cytoplasmic p21 expression levels determine cisplatin resistance in human testicular cancer. J Clin Invest. 2010;120:3594-605.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊