跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/01/21 02:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:石東原
研究生(外文):Tung-Yuan Shih
論文名稱:抑制抗結核藥物代謝酵素與結合代謝基因多型性改善抗結核藥物肝毒性及其機轉之研究
論文名稱(外文):Application of Anti-Tuberculosis Drug-Metabolising Enzyme Inhibition and Polymorphisms Improve Anti-Tuberculosis Drug-Induced Hepatotoxicity
指導教授:胡幼圃胡幼圃引用關係
指導教授(外文):Oliver Yoa-Pu Hu
口試委員:李恆昇孫璐西林滿玉黃怡超胡幼圃
口試委員(外文):Herng-Sheng LeeLucy Sun HwangAnya Maan-Yuh LinYi-Tsau HuangOliver Yoa-Pu Hu
口試日期:2013-05-24
學位類別:博士
校院名稱:國防醫學院
系所名稱:生命科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:176
中文關鍵詞:異菸鹼醯胺肝毒性細胞色素P450 2E1
外文關鍵詞:IsoniazidHepatotoxicityCYP2E1
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1292
  • 評分評分:
  • 下載下載:35
  • 收藏至我的研究室書目清單書目收藏:0
結核病(Tuberculosis,TB)是全球僅次於愛滋病(Human immunodeficiency virus,HIV),致死率排名第二的傳染性疾病。WHO估計目前全球約有870萬新發結核病患,且有140萬人死於肺結核,由於治療期程長及藥物副作用等因素,常造成患者藥物中斷、治療失敗或引發抗藥性。
常用第一線抗結核藥物,如:異菸鹼醯胺(isoniazid,INH)、立復黴素(rifampin,RIF)與丙基硫異菸醯胺(pyrazinamide,PZA)均會造成致病率1-36%之肝損傷。臨床證據顯示細胞色素P450 2E1 (CYP2E1)與amidase為導致嚴重肝毒性之重要致病因子;目前對於PZA肝毒性機轉,僅了解相關代謝酵素有amidase與xanthine oxidase,然而是何代謝途徑或代謝物造成肝毒性,或各代謝途徑於人體內所佔比例仍不清楚,甚至無任何相關研究。
本研究目的係針對第一線抗結核藥物,探討其肝毒性可能機轉,並以調控相關代謝酵素改善藥物之肝毒性,更進一步希望找出具抗結核藥物肝毒性高風險之代謝酵素xanthine oxidase基因型,期望應用於臨床診斷預測結核患者是否具高肝毒性之風險,降低患者發生肝毒性風險。研究重點一、調控抗結核藥物代謝酵素CYP2E1以改善藥物肝毒性之研究;二、探討PZA肝毒性作用機轉及改善之研究;三、研究結核病患xanthine oxidase對偶基因多型性與抗結核藥物肝毒性之風險評估。
自111種常用且安全、人體可食用賦型劑與食品中黃酮類純成分化合物,利用人肝與鼠肝微粒體篩選CYP2E1抑制劑,挑選抑制率可達60-88%的HUEXC030 (mannitol)進行小鼠藥效藥動試驗;在腹腔內單獨注射抗結核藥物INH、INH/RIF或INH/RIF/PZA的小鼠,與空白對照組相比,於肝功能指標AST (aspartate aminotransferase)、ALT(alanine aminotransferase)及GSP (Galactose single point method)均產生明顯且有意義的上升( p < 0.005);肝臟脂質過氧化分析,亦呈現malondialdehyde (MDA)明顯增加、glutathione (GSH)顯著下降(p < 0.005);因抗結核藥物所引起肝傷害也反映在相對應的肝組織切片上,顯示已成功建立抗結核藥物單方INH、複方INH/RIF與INH/RIF/PZA誘發肝毒性小鼠模式。而此肝損傷現象可被同時併用HUEXC030所改善,所測得肝發炎指標AST、ALT及GSP 均有顯著性地下降,所改善的結果也反映在相對應的肝臟組織,其中以HUEXC030劑量每天每公斤1.67毫克的效果最好,於藥動試驗結果亦顯示,併服HUEXC030確實可抑制小鼠體內CYP2E1活性,但不影響INH和RIF等藥物於小鼠體內吸收,此現象亦反映在抗菌試驗中,HUEXC030不影響INH與RIF之藥效;Rifamate®不併服併服抑制劑HUEXC030於健康受試者藥動學研究結果顯示,HUEXC030不影響INH及其代謝物acetyl-INH、INA與RIF於人體內藥動學變化,代表HUEXC030不影響INH與RIF等藥物在人體內吸收情形,而反應於CYP2E1專一性受質Chlorzoxazone (CZX)藥動學參數分析上,與Rifamate®對照組相比,併用HUEXC030會使血中濃度提高,其Cmax、AUCinfinity顯著增加至對照組的137-141% (p < 0.005),在CZX代謝物6-OH-CZX藥動學參數分析上,HUEXC030會使其代謝物6-OH-CZX血中濃度降低,其Cmax、AUCinfinity顯著下降至對照組的58-62% (p < 0.005),顯示mannitol在人體內仍具抑制CYP2E1效果。
另外,在細胞、動物、人體體內試驗證實PZA代謝物PA與5-OH-PA對肝細胞毒性均較PZA的細胞毒性大,PZA各代謝物毒性排列順序為5-OH-PA > PA > PZA > 5-OH-PZA;分析191位服用抗結核藥複方TB患者之尿液,結果亦顯示服用PZA有肝毒性患者尿液中,其毒性代謝物5-OH-PA比例會隨肝毒性的嚴重性而增加 (p < 0.005);在PZA併服不併服代謝酵素amidase抑制劑HUCHE033(quercetin)於大鼠體內試驗結果,顯示併服HUCHE033試驗組大鼠體內PZA毒性代謝物5-OH-PA含量顯著低於單獨服用PZA對照組( p < 0.005),且HUCHE033能分別有效降低毒性代謝物5-OH-PA ( p < 0.005)與PA之代謝比率 (p < 0.05),amidase抑制率約24-37%,顯示HUCHE033可有效降低因PZA所產生之肝毒性,其改善結果亦反應在AST、ALT、GSP與相對應肝組織切片上;在PZA併服不併服HUCHE033於健康受試者體內試驗結果,顯示併服HUCHE033對PZA於健康受試者體內的藥物動力學影響並不顯著,但卻能有效降低PZA毒性代謝物5-OH-PA之原藥物曲線下面積 (p < 0.01),抑制率約25%,在metabolic ratio分析結果亦顯示HUCHE033能有效降低PZA毒性代謝物5-OH-PA ( p < 0.01)與PA 代謝比例 ( p < 0.01),抑制率約39%,顯示HUCHE033於人體、大鼠體內同樣具抑制amidase效果,且可降低5-OH-PA、PA等毒性代謝物含量,推論quercetin可能具降低PZA藥物肝毒性之潛力。
PZA主要代謝酵素xanthine oxidase (XO)具基因多型性(gene polymorphism),對其酵素活性會產生顯著影響,在收集分析451位TB患者基因檢體,其中扣除原本即有肝臟疾病者(40人),共有411人進行風險分析。結果發現411人中77人因服用抗結核藥物產生肝副作用,比率達到18.7%。若帶有2個 XO SNPs,其中任一個SNP之TB患者,其服用抗結核藥物誘發肝毒性風險顯著高於未帶這2個SNPs患者達1.7-4.8倍,這2個 SNPs 分別為rs1884725 (Odd ratio [OR], 1.71, p = 0.043)與rs2295475 ([OR], 4.32, p = 0.006),顯示具rs1884725與rs2295475 突變型對偶基因患者較野生型具較高發生肝毒性風險,而這2個基因型在國人的發生頻率達到0.312~0.512,亦即有三成多到五成多的TB患者是屬於服用抗結核藥物誘發肝毒性的高風險群,這是目前文獻未提及過新發現,可給予醫師在治療結核病患用藥處方上之建議與參考。
綜合上述,我們已建立抗結核藥物造成肝毒性之動物模式,並成功自111種常用中篩選了多種CYP2E1及amidase抑制劑,由細胞、動物和臨床深入研究PZA致肝毒性機轉,同時也找出具高肝毒性風險之基因,並進入動物試驗證明抑制CYP2E1及amidase可降低或去除抗結核藥物之肝毒性,並於健康人體內證實此二酵素抑制劑在具抑制效果之下,不影響抗結核藥物濃度及其藥效。
Backgrounds and Aims: Tuberculosis (TB) is the second leading cause of death from an infectious disease worldwide, after the human immunodeficiency virus (HIV). Drug-induced adverse effects: isoniazid (INH), rifampin (RIF) and pyrazinamide (PZA) may induce hepatic injury, incidences various 1-36%. Cytochrome P450 2E1 (CYP2E1) and amidase are thought to contribute to the anti-tuberculosis drugs-induced hepatotoxicity (ATDH). In addition, the severity of PZA-induced hepatotoxicity is no less than that associated with INH or RIF. However, relatively little is known about the hepatotoxicity of PZA. The objectives of this study were to: (1) investigate the mechanism of ATDH and improve the ATDH through metabolic enzymes regulation; (2) to evaluate whether the genetic polymorphisms of xanthine oxidase (XO) influence susceptibility to ATDH.
Methods: We screened 111 known compounds from known pharmaceutical excipients and natural flavonoids compounds as inhibitors of CYP2E1. The hepatotoxic fixed-dose of INH/RIF/PZA were 50/100/250 mg/kg/day, respectively. Hepatotoxicity was assessed by the galactose single point (GSP) method (a US Food and Drug Administration (FDA) recommended quantitative liver function test), liver histopathology, malondialdehyde (MDA) assay, and measurement of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activity. We chose the CYP2E1-specific substrate chlorzoxazone to assess CYP2E1 activity in mice and human. In addition, PZA metabolites were identified and cytotoxicity in HepG2 cells was assessed. Potential PZA and PA hepatotoxicity was then tested in rats. Urine specimens were collected from 191 TB patients and the results were evaluated to confirm whether a correlation existed between PZA metabolite concentrations and hepatotoxicity. This led to the hypothesis that co-administration of amidase inhibitor decreases or prevents PZA (and its metabolites)-induced hepatotoxicity in rats and human. Finally, we included 411 TB patients to evaluate whether the genetic polymorphisms of XO influence susceptibility to ATDH.
Results: Selected CYP2E1 inhibitor, HUEXC030 (mannitol) inhibited CYP2E1 activity by 60% to 88% in HLMs and RLMs in a dose-dependent manner. HUEXC030 diminished or even eradicated INH/RIF-induced hepatotoxicity in mice. Serum AST, ALT and GSP levels were significantly increased 3.8- to 7.8-fold in these mice (p < 0.005), and these levels could be lowered by selected CYP2E1 inhibitors. Moreover, HUEXC030 treatment prevented INH/RIF-mediated lipid peroxidation, as indicated by the reduction in hepatic GSH depletion and MDA formation (p < 0.005). Pharmacokinetic studies with INH/RIF showed that co-treatment with HUEXC030 inhibited CYP2E1 activity but did not affect the absorption of INH and RIF in mice. We also demonstrated the pharmacodynamically effective CYP2E1 inhibitor HUEXC030 had the same inhibitory effect on CYP2E1 in healthy volunteers as well as in mice, with inhibition of up to 58% (p < 0.005). These results implied that above selected CYP2E1 inhibitors have the high potential for use in developing a novel INH/RIF pharmaceutical formulation that does not cause hepatotoxicity and consequently improving the compliance of TB patients taking anti-TB drugs. To determine whether PZA metabolites are responsible for PZA-induced hepatotoxicity, PA and 5-OH-PA are more toxic than PZA. PZA and PA treatment of rats significantly increases AST and ALT activity and GSP levels (p < 0.005). In analysis of PZA metabolites in 191 TB patients’ urine with hepatotoxicity, provides addition evidence support for 5-OH-PA significantly increased the phenomenon (p < 0.005). PA and 5-OH-PA, the metabolites of PZA through amidase catalysis, were more toxic effect than PZA in HepG2 cell. In pharmacokinetic study of PZA without or with HUCHE033 (quercetin) combinations in healthy volunteers, HUCHE033 could decreased amidase activity in human, pharmacokinetic parameters of 5-OH-PA with AUC and metabolic ratio (AUC5-OH-PA/ AUCPZA and AUCPA/ AUCPZA) were significantly inhibited 25% and 39%, respectively (p < 0.01). HUCHE033 did decrease plasma level of PZA toxic metabolites, such as 5-OH-PA and PA, but did not affect PZA in human. Furthermore, an anti-TB efficacy assay revealed that above selected CYP2E1 or amidase inhibitor combinations did not affect the anti-TB effects of anti-TB drugs. In addition, we found that XO rs1884725 or rs2295475 mutant type could be a risk factor of ATDH in 411 TB patients (mutant vs. wildtype: Odds ratio [OR], 1.71, p = 0.043; mutant vs. wildtype: [OR], 4.32, p = 0.006, respectively).
Conclusions: (1) To our knowledge, this is the first report of kaempferol’s utility as an adjuvant for preventing CYP2E1-mediated hepatotoxicity induced by drugs such as INH and RIF; (2) Mannitol was an FDA-approved excipient, was identified as a CYP2E1 inhibitor that could be a useful component to eradicate the anti-TB drugs-induced hepatotoxicity; (3) This is the first report of a cell-line, animal, and clinical trial confirming that the metabolite 5-OH-PA is responsible for PZA-induced hepatotoxicity; (4) Xanthine oxidase SNP rs2295475 polymorphism could be a risk factor associated with susceptibility to ATDH.
第壹章、 緒論 .................................................................................................1
第一節、 前言 .................................................................................................1
第二節、 藥物代謝 .............................................................................................4
第三節、 結核病 ...............................................................................................6
一、 抗結核藥物及其治療 ........................................................................................7
二、 抗結核藥物及其藥物副作用之關係 .............................................................................10
三、 藥物與其相關代謝酵素抑制劑之相互關係 ........................................................................13
第四節、 抗結核藥物代謝酵素基因多型性與藥物肝毒性之相關性 ..........................................................16
第五節、 半乳糖單點法 (Galactose Single Pint, GSP).............................................................20
第貳章、 材料、實驗設計與方法 ..................................................................................23
第一節、 藥品與試劑 ...........................................................................................23
第二節、 儀器 ................................................................................................24
一、 一般儀器 ................................................................................................24
二、 高效能液相層析儀(HPLC) ...................................................................................25
三、 高效能液相層析串聯式質譜儀(LC-MS/MS) ......................................................................25
第三節、 實驗動物、細胞株與菌株 ................................................................................26
第四節、 實驗設計與方法 .......................................................................................26
一、 半乳糖單點法 (Galctose Single Point, GSP)於小鼠動物模式建立 ................................................26
1.1 試驗動物分組 .............................................................................................26
1.2 試驗處理 .................................................................................................27
二、 蛋白質含量測定 ...........................................................................................28
三、 細胞色素P450 2E1 (CYP2E1) 抑制劑之篩選 - 鼠肝微粒體與人肝微粒體 ..............................................29
3.1 肝臟微粒體製備 ............................................................................................29
3.2 實驗原理及試劑 ............................................................................................30
3.3 細胞色素P450 2E1 (CYP2E1)抑制劑的篩選 ......................................................................31
四、抑制抗結核藥物代謝酵素CYP2E1改善藥物肝毒性之研究 ..............................................................32
4.1 抗結核病藥物肝毒性動物模式建立暨CYP2E1抑制劑改善肝毒性藥效試驗 .................................................32
4.1-1 INH肝毒性模式建立暨CYP2E1抑制劑改善INH肝毒性小鼠藥效試驗 ....................................................32
4.1-2 INH/RIF肝毒性模式建立暨CYP2E1抑制劑改善INH/RIF肝毒性小鼠藥效試驗 ............................................33
4.1-3 INH/RIF/PZA肝毒性模式建立暨CYP2E1抑制劑改善INH/RIF/PZA肝毒性小鼠藥效試驗 ....................................33
4.2 CYP2E1抑制劑於改善抗結核藥物誘發肝毒性小鼠之體內藥動學試驗 .....................................................34
4.2-1 CYP2E1抑制劑於改善INH/RIF肝毒性小鼠對抗結核藥物之藥動學影響 .................................................34
4.2-2 抗結核藥物以及代謝物於液相層析串聯質譜儀 (LC-MS/MS)分析 .....................................................35
4.2-3 CYP2E1抑制劑HCHE010、HUEXC030於改善INH/RIF肝毒性小鼠對體內CYP2E1酵素之影響 .................................35
4.3 INH/RIF不併用或併用CYP2E1抑制劑HUCHE010、HUEXC030之抗菌試驗 .................................................38
4.4 低副作用抗結核二合一複方製劑Rifamate®於健康受試者之藥動學試驗 ..................................................39
4.4-1 Rifamate®不併服或併服抑制劑HUEXC030於健康受試者體內抗結核藥物之藥動學試驗 ....................................39
4.4-2 Rifamate®不併服或併服抑制劑HU030於健康受試者體內對CYP2E1酵素之影響 ..........................................40
五、 PZA肝毒性作用機轉探討及改善之研究 ..........................................................................40
5.1 PZA肝毒性機轉與改善之研究 .................................................................................40
5.1-1 製備PZA相關代謝物 ......................................................................................41
5.1-2 PZA及其代謝物於HepG2肝癌細胞毒性試驗 .....................................................................41
5.1-3 PZA及代謝物PA肝毒性大鼠模式建立暨amidase抑制劑BNPP改善PZA、PA 肝毒性大鼠藥效試驗 .............................42
5.1-4臨床患者尿液檢品與PZA肝毒性相關性分析 ......................................................................42
5.2 PZA不併服或併服amidase抑制劑HUCHE033於大鼠體內藥效藥動學試驗 .................................................43
5.3 PZA不併用或併用amidase抑制劑HUCHE033之抗菌試驗 .............................................................43
5.4 PZA不併服或併服amidase抑制劑HUCHE033於健康受試者體內之藥動學試驗 .............................................44
六、 結核病患xanthine oxidase對偶基因多型性與抗結核藥物肝毒性之風險評估............................................45
第參章、 實驗結果 ............................................................................................46
第一節、 半乳糖單點法(Galctose Single Point, GSP於小鼠動物模式建立 ..............................................46
第二節、 蛋白質測定 ...........................................................................................47
一、 鼠肝微粒體酵素懸浮液的蛋白質含量測定 ........................................................................47
二、 人肝微粒體酵素懸浮液的蛋白質含量測定 ........................................................................47
第三節、 細胞色素P450 2E1(CYP2E1)抑制劑之體外篩選 ...............................................................48
一、 鼠肝微粒體細胞色素P450 2E1抑制劑篩選結果 ...................................................................48
二、 人肝微粒體細胞色素P450 2E1抑制劑篩選結果 ...................................................................49
第四節、 低副作用抗結核病複方製劑之研究 ..........................................................................51
4.1 抗結核病藥物肝毒性動物模式建立暨CYP2E1抑制劑改善小鼠肝毒性藥效試驗 .............................................51
4.1-1 INH不併服或併服CYP2E1抑制劑於改善小鼠INH 肝毒性藥效試驗結果 ................................................51
4.1-2 INH/RIF不併服或併服CYP2E1抑制劑於改善小鼠INH/RIF肝毒性藥效試驗結果 ........................................52
4.1-3 INH/RIF/PZA不併服或併服CYP2E1抑制劑於改善小鼠INH/RIF/PZA肝毒性藥效試驗結果 .................................55
4.2 CYP2E1抑制劑於改善抗結核藥物造成肝損傷小鼠體內藥動學試驗 .....................................................55
4.2-1 INH/RIF不併服或併服CYP2E1抑制劑HUCHE010於小鼠體內藥動學試驗結果 ...........................................55
4.2-2 INH/RIF不併服或併服CYP2E1抑制劑HUEXC030於小鼠體內藥動學試驗結果 ...........................................56
4.3 INH/RIF不併用或併用CYP2E1抑制劑HUCHE010、HUEXC030之抗菌試驗結果 ............................................56
4.4 低副作用抗結核病二合一複方製劑Rifamate®於健康受試者之藥動學試驗結果 ...........................................57
第五節、 PZA肝毒性作用機轉探討及改善之研究 ......................................................................58
5.1 抗結核病藥物PZA肝毒性機轉與改善之研究 .......................................................................58
5.1-1 PZA及其代謝物於HepG2細胞毒性試驗結果 .....................................................................58
5.1-2 PZA及代謝物PA不併服或併服amidase抑制劑改善大鼠體內PZA、PA肝毒性藥效試驗結果 ..................................58
5.1-3 TB臨床病患尿液檢品與肝毒性相關性分析結果 ...................................................................59
5.2 PZA不併服或併服amidase抑制劑HUCHE033於大鼠體內藥動學試驗結果 .................................................60
5.3 PZA不併用或併用amidase抑制劑HUCHE033之抗菌試驗結果 ..........................................................60
5.4 PZA不併服或併服amidase抑制劑HUCHE033於健康受試者體內藥動學試驗結果 ............................................61
第六節、 臨床結核病患xanthine oxidase對偶基因多型性與抗結核藥物肝毒性之風險評估 .....................................62
第肆章、 討論 .................................................................................................64
第伍章、 結論 .................................................................................................72
第陸章、 參考文獻 .............................................................................................73
第柒章、 附表 .................................................................................................87
附圖 ................................................................................................139
SCI 發表文章.........................................................................................164
1.Abe M, Deguchi T, Suzuki T. The structure and characterisation of a fourth allele of polymorphic N-acetyltransferase gene found in the Japanese population. Biochem Biophys Res Commun. 191:811–816, 1993.
2.Agrawal S, Singh I, Kaur KJ, Bhade SR, Kaul CL, Panchagnula R. Comparative bioavailability of rifampicin, isoniazid and pyrazinamide from a four drug fixed dose combination with separate formulations at the same dose levels. Int J Pharm. 276:41-49, 2004.
3.Attri S, Rana SV, Vaiphei K, Sodhi CP, Katyal R, Goel RC. Isoniazid and rifampicin induced oxidative hepatic injury protection by N-acetylcysteine. Hum Exp Toxicol. 19:517-524, 2000.
4.Boukouvala S and Fakis G. Arylamine N-acetyltransferases: what we learn from genes and genomes. Drug Metab Rev. 37:511-564, 2005.
5.Brady JF, Xiao F, Wang MH, Li Y, Ning SM, Gapac JM, Yang CS. Effects of disulfiram on hepatic P450IIE1, other microsomal enzymes, and hepatotoxicity in rats. 1991. Toxicol Appl Pharmacol. 108:366-373, 1991.
6.Cederbaum AI. Cytochrome P450 2E1-dependent oxidant stress and upregulation of anti-oxidant defense in liver cells. J Gastroenterol Hepatol. 21:S22-S25, 2006.
7.CDC. Fetal and severe hepatitis associated with rifampin and pyrazinamide for the treatment of latent tuberculosis infection. MMWR. 50:289-291, 2001.
8.CDC. Update: adverse event data and revised American Thoracic Society/CDC recommendations against the use of rifampin and pyrazinamide for treatment of latent tuberculosis infection. MMWR. 52:735-739, 2003.
9.CDC. Recommendations for use of an isoniazid-rifapentine regimen with direct observation to treat latent Mycobacterium tuberculosis infection. MMWR. 60;1650-1653, 2011.
10.Cermak R. Effect of dietary flavonoids on pathways involved in drug metabolism. Expert Opin Drug Metab Toxicol. 4:17-35, 2008.
11.Chiang CY, Hsu CJ, Huang RM, Lin TP, Luh KT. Antituberculosis drug resistance among retreatment tuberculosis patients in a referral center in Taipei. J Formos Med Assoc. 103:411-415, 2004.
12.Chowdhury A, Santra A, Bhattacharjee K, Ghatak S, Saha DR, Dhali GK. Mitochondrial oxidative stress and permeability transition in isoniazid and rifampicin induced liver injury in mice. J Hepatol. 45:117-126, 2006.
13.Cohen T, Colijn C, Wright A. Challenges in estimating the total burden of drug-resistant tuberculosis. Am J Respir Crit Care Med. 177:1302-1306, 2008
14.Cuatrecasas P and Segal S. Mammalian galactokinase. Developmental and adaptive characteristics in the rat liver. J Biol Chem. 240:2382-2388, 1965.
15.Davies PDO. Respiratory Tuberculosis. In Davies PDO, ed. Clinical Tuberculosis, 3rd ed. London: Arnold; 2003, p107-124.
16.De Rosa HJ, Baldan HM, Brunetti IL, Ximenes VF, Machado RG. The effect of pyrazinamide and rifampicin on isoniazid metabolism in rats. Biopharm Drug Dispos. 28:291-296, 2007.
17.Dye C, S Scheele, P Dolin, V Pathania & MC Raviglione. Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project. JAMA. 282:677-686, 1999.
18.Ellard GA. Variations between individuals and populations in the acetylation of isoniazid and its significance for the treatment of pulmonary tuberculosis. Clin Pharmacol Ther. 19:610-625, 1976.
19.Espinal MA, Laserson K, Camacho M, Fusheng Z, Kim SJ, Tlali RE, Smith I, Suarez P, Antunes ML, George AG, Martin-Casabona N, Simelane P, Weyer K, Binkin N, Raviglione MC. Determinants of drug-resistant tuberculosis: analysis of 11 countries. Int J Tuberc Lung Dis. 5:887-893, 2001.
20.Facino RF and Carini M. The inhibitory effect of pyrazinamide on microsomal monooxygenase activities is related to the binding to reduced cytochrome P-450. Pharmacol Res Commun. 12:523–537, 1980.
21.Fretland AJ, Leff MA, Doll MA, Hein DW. Functional characterisation of human N-acetyltransferase 2 (NAT2) single nucleotide polymorphisms. Pharmacogenetics. 11:207–215, 2001.
22.Ghoreishi SM and Shahrestani RG. Innovative strategies for engineering mannitol production. Trends Food Sci Technol. 20:263-270, 2009.
23.Gradolatto A, Canivenc-Lavier MC, Basly JP, Siess MH, Teyssier C. Metabolism of apigenin by rat liver Phase I and Phase II enzymes and by isolated perfused rat liver. Drug Metab Dispos. 32:58-65, 2004.
24.Griffith OW. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem. 106:207-212, 1980.
25.Guengerich FP, Kim DH, Iwasaki M. Role of human cytochrome P-450 IIE1 in the oxidation of many low molecular weight cancer suspects. Chem Res Toxicol. 168-179, 1991.
26.Gurumurthy P, Krishnamurthy M, Nazareth O. Lack of relationship between hepatic toxicity and acetylator phenotype and in South Indian patients during treatment with isoniazid for tuberculosis. Am Rev Respir Dis. 129:58-61, 1984.
27.Hsu HL, Bai KJ, Chiang YC, Lin SJ, Yu MC. Hepatitis associated with prothionamide for treatment of multidrug-resistant tuberculosis. Multidrug resistant tuberculosis. J Formos Med Assoc. 109:923-927, 2010.
28.Hu OYP, Tang HS, Chang CL. The influence of chronic lobular hepatitis on pharmacokinetics of cefoperazone--a novel galactose single-point method as a measure of residual liver function. Biopharm Drug Dispos. 15:563-576, 1994.
29.Hu OYP, Tang HS, Chang CL. Novel galactose single point method as a measure of residual liver function: example of cefoperazone kinetics in patients with liver cirrhosis. J Clin Pharmacol. 35: 250-258, 1995.
30.Hu OYP, Tang HS, Sheeng TY, Chen TC, Curry SH. Pharmacokinetics of promazine in patients with hepatic cirrhosis--correlation with a novel galactose single point method. 1995. J Pharm Sci. 84:111-114, 1995.
31.Hu OYP, Hu TM, Tang HS. Determination of galactose in human blood by high-performance liquid chromatography: comparison with an enzymatic method and application to the pharmacokinetic study of galactose in patients with liver dysfunction. J Pharm Sci. 84: 231-235, 1995.
32.Huang YS, Chern HD, Su WJ, Wu JC, Chang SC, Chiang CH, Chang FY, Lee SD. Cytochrome P450 2E1 genotype and the susceptibility to antituberculosis drug-induced hepatitis. Hepatology. 37:924-930, 2003.
33.Hunter AL, Neal RA. Inhibition of hepatic mixed-function oxidase activity in vitro and in vivo by various thiono-sulfur-containing compounds. Biochem Pharmacol. 24:2199-2205, 1975.
34.Hwang SJ, Wu JC, Lee CN, Yen FS, Lu CL, Lin TP, Lee SD. A prospective clinical study of isoniazid- rifampicin-pyrazinamide induced liver injury in an area endemic for hepatitis. J Gastroenterol Hepatol. 12: 87-91, 1997.
35.Ichida K, Amaya Y, Noda K, Minoshima S, Hosoya T, Sakai O, Shimizu N, Nishino T. Cloning of the cDNA encoding human xanthine dehydrogenase (oxidase): structural analysis of the protein and chromosomal location of the gene. Gene. 133:279-284, 1993.
36.Ingelman-Sundberg M and Rodriguez-Antona C. Pharmacogenetics of drug-metabolizing enzymes: implications for a safer and more effective drug therapy. Philos Trans R Soc Lond B Biol Sci. 360:1563-1570, 2005.
37.Jang SI, Kim HJ, Hwang KM. Hepatoprotective effect of baicalin, a major flavone from Scutellaria radix, on acetaminophen-induced liver injury in mice. Immunopharmacol Immunotoxicol. 25:585-594, 2003.
38.Jasmer RM, Saukkonen JJ, Blumberg HM, Daley CL, Bernardo J, Vittinhhoff E, King MD, Kawamura LM, Hopewell PC. Short-course rifampin and pyrazinamide compared with isoniazid for latent tuberculosis infection: a multicenter clinical trial. Ann Intern Med. 137:640-647, 2002.
39.Jasmer RM and Daley CL. Rifampin and pyrazinamide for treatment of latent tuberculosis infection: is it safe? Am J Respir Crit Care Med. 167:809-810, 2003.
40.Jenner AM and Timbrell JA. Effect of acute and repeated exposure to low doses of hydrazine on hepatic microsomal enzymes and biochemical parameters in vivo. Arch Toxicol. 68:240-245, 1994.
41.Jeong HG. Inhibition of cytochrome P450 2E1 expression by oleanolic acid: hepatoprotective effects against carbon tetrachloride-induced hepatic injury. Toxicol Lett. 105:215-222, 1999.
42.Kharasch ED, Thummel KE, Mhyre J, Lillibridge JH. Single-dose disulfiram inhibition of chlorzoxazone metabolism: a clinical probe for P450 2E1. Clin Pharmacol Ther. 53:643-650, 1993.
43.Kocic B, Kitic D, Brankovic S. Dietary flavonoid intake and colorectal cancer risk: evidence from human population studies. J BUON. 18:34-43, 2013.
44.Krishna D and Klotz U. Extrahepatic metabolism of drugs in humans. Clin Pharmacokinet. 26:144-160, 1994.
45.Kudo M, Moteki T, Sasaki T, Konno Y, Ujiie S, Onose A, Mizugaki M, Ishikawa M, Hiratsuka M. Functional characterization of human xanthine oxidase allelic varients. Pharmacogenet Genomics. 18:243-251, 2008.
46.Lacroix C, Hoang TP, Nouveau J, Guyonnaud C, Laine G, Duwoos H, Lafont O. Pharmacokinetics of pyrazinamide and its metabolites in healthy subjects. Eur Respir J. 36:395-400, 1989.
47.Lee SS, Buters JT, Pineau T, Fernandez-Salguero P, Gonzalez FJ. Role of CYP2E1 in the hepatotoxicity of acetaminophen. J Biol Chem. 271:12063-12067, 1996.
48.Leff MA, Fretland AJ, Doll MA, Hein DW.. Novel human N-acetyltransferase 2 alleles that differ in mechanism for slow acetylator phenotype. J Biol Chem. 274:34519–34522, 1999.
49.Liu CE, Chen CH, Hsiao JH, Young TG, Tsay RW, Fung CP. Drug resistance of Mycobacterium tuberculosis complex in central Taiwan. J Microbiol Immunol Infect. 37:295-300, 2004.
50.Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem. 193:265-275, 1951.
51.McNeill L, Allen M, Estrada C, Cook P. Pyrazinamide and rifampin vs isoniazid for the treatment of latent tuberculosis: improved completion rates but more hepatotoxicity. Chest. 123:102-106, 2003.
52.Mehmedagic A, Vérité P, Ménager S, Tharasse C, Chabenat C, André D, Lafont O. Determination of pyrazinamide and its main metabolites in rat urine by high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl. 695:365-372, 1997.
53.Mitchell JR, Thorgeisson UP, Black M, Timbrell JA, Snodgrass WR, Potter WZ, Jollow DJ, Keiser HR. Increased incidence of isoniazid hepatitis in rapid acetylators: Possible relation to hydrazine metabolites. Clin Pharmacol Ther. 18:70-79, 1975.
54.Mitchell JR, Zimmerman HJ, Ishak KG, Thorgeirsson UP, Timbrell JA, Snodgrass WR, Nelson SD. Isoniazid livr injury: clinical spectrum, pathology and probable pathogenesis. Ann Intern Med. 84:181-192, 1976.
55.Mitchell I, Wendon J, Fitt S, Williams R. Anti-tuberculous therapy and acute liver failure. Lancet. 345:555-556, 1995.
56.Nelson DR. Cytochrome P450 and the individuality of species. Arch Biochem Biophys. 369:1-10, 1999.
57.Nelson DR. Introductory remarks on human CYPs. Drug Metab Rev. 34:1-5, 2002.
58.Nicod L, Viollon C, Regnier A, Jacqueson A, Richert L. Rifampicin and isoniazid increase acetaminophen and isoniazid cytotoxicity in human HepG2 hepatoma cells. Hum Exp Toxicol. 16:28-34, 1997.
59.Nishimura Y, Kurata N, Sakurai E, Yasuhara H. Inhibitory effect of antituberculosis drugs on human cytochrome P450 mediated activities. J Pharmacol Sci. 96:293-300, 2004.
60.Nolan CM, Goldberg SV, Buskin SE. Hepatotoxicity associated with isoniazid preventive therapy: a 7-year survey from a public health tuberculosis clinic. JAMA. 281:1014-1018, 1991
61.Ohkawa H, Ohish N, Yagi K. Assay for lipid peroxidase in animal tissues by thiobarbituric acid reaction. Anal Biochem. 95:351-358, 1979.
62.Otake Y, Hsieh F, Walle T. Glucuronidation versus oxidation of the flavonoid galangin by human liver microsomes and hepatocytes. Drug Metab Dispos. 30:576-581, 2002.
63.Pifferi G. and Pestani P. The safety of pharmaceytical excipients IL. Farmaco. 58:541-555, 2003.
64.Ramaiah SK, Apte U, Mehendale HM. Cytochrome P4502E1 induction increases thioacetamide liver injury in diet-restricted rats. Drug Metab Dispos. 29:1088-1095, 2001.
65.Ren X, Mao X, Si L, Cao L, Xiong H, Qin J. Pharmaceutical excipients inhibit cytochrome P450 activity in cell free systems and after systemic administration. Eur J Pharm Biopharm. 71:279-288, 2008.
66.Roy B, Chowdhury A, Kundu S, Santra A, Dey B, Chakraborty M, Majumder PP. Increased risk of antituberculosis drug-induced hepatotoxicity in individuals with glutathione S-transferase M1 'null' mutation. J Gastroenterol Hepatol. 16:1033-1037, 2001.
67.Ryan DE, Ramanathan L, Iida S, Thomas PE, Haniu M, Shively JE, Lieber CS, et al. Characterization of a major form of rat hepatic microsomal cytochrome P-450 induced by isoniazid. J Biol Chem. 260:6385-6393, 1985.
68.Sakamoto N, Yamamoto T, Moriwaki Y, Teranishi T, Toyoda M, Onishi Y, Kuroda S, Sakaguchi K, Fujisawa T, Maeda M, Hada T. Identification of a new point mutation in the human xanthine dehydrogenase gene responsible for a case of classical type I xanthinuria. Hum Genet. 108:279-283, 2001.
69.Sarich TC, Youssefi M, Zhou T, Adams SP, Wall RA, Wright JM. Role of hydrazine in the mechanism of isoniazid hepatotoxicity in rabbits. Arch Toxicol. 70:835-840, 1996.
70.Sarich TC, Adams SP, Petricca G, Wright JM. Inhibition of isoniazid-induced hepatotoxicity in rabbits by pretreatment with an amidase inhibitor. J Pharmacol Exp Ther. 289:695-702, 1999.
71.Sarma GR, Immanuel C, Kailasam S, Narayana AS, Venkatesan P. Rifampin-induced release of hydrazine from isoniazid. A possible cause of hepatitis during treatment of tuberculosis with regimens containing isoniazid and rifampin. Am Rev Respir Dis. 133:1072-1075, 1986.
72.Sodhi CP, Rana SV, Mehta SK, Vaiphei K, Attri S, Thakur S, Mehta S. Study of oxidative stress in isoniazid induced hepatic injury in young rats with and without protein energy malnutrition. J Biochem Toxicol. 11:139-146, 1996.
73.Sodhi CP, Rana SV, Mehta SK, Vaiphei K, Attari S, Mehta S. Study of oxidative-stress in isoniazid-rifampicin induced hepatic injury in young rats. Drug Chem Toxicol. 20:255-269, 1997.
74.Stanley LA and Sim E. Update on the pharmacogenetics of NATs: structural considerations. Pharmacogenomics. 9:1673-1693, 2008.
75.Steele MA, Burk RF, Des Prez RM. Toxic hepatitis with isoniazid and rifampicin: a meta-analysis. Chest. 99:465-471, 1991.
76.Stout JE, Engemann JJ, Cheng AC, Fortenberry ER, Hamilton CD. Safety of 2 months of rifampin and pyrazinamide for treatment of latent tuberculosis. Am J Respir Crit Care Med. 167:824-827, 2003.
77.Tafazoli S, Mashregi M, O'Brien PJ. Role of hydrazine in isoniazid-induced hepatotoxicity in a hepatocyte inflammation model. Toxicol Appl Pharmacol. 229:94-101, 2008.
78.Tang HS and Hu OYP. Assessment of liver function using a novel galactose single point method. Digestion. 52:222-231, 1992.
79.Tasduq SA, Kaiser P, Sharma SC, Johri RK. Potentiation of isonoazid-induced liver toxicity by rifampicin in a combinational therapy of antitubercular drugs (rifampicin, isoniazid and pyrazinamide) in Wistar rats: a toxicity profile study. Hepatol Res. 37:845-853, 2007.
80.Thier R, Brüning T, Roos PH, Rihs HP, Golka K, Ko Y, Bolt HM. Markers of genetic susceptibility in human environmental hygiene and toxicology: the role of selected CYP, NAT and GST genes. Int J Hyg Environ Health. 206:149-171, 2003.
81.Timbrell JA, Mitchell JR, Snodgrass WR, Nelson SD. Isoniazid hepatotoxicity: The relationship between covalent binding and metabolism in vivo. J Pharmacol Exp Ther. 213:364-369, 1980
82.Tostmann A, Boeree MJ, Peters WH, Roelofs HM, Aarnoutse RE, van der Ven AJ, Dekhuijzen PN. Isoniazid and its toxic metabolite hydrazine induce in vitro pyrazinamide toxicity. Int J Antimicrob Agents. 31:577-580, 2008.
83.Townsend DM and Tew KD. The role of glutathione-s-transferase in anti-cancer drug resistance. Oncogene. 22:7369-7375, 2003.
84.Travis CP and Wayne MG. Controlling extensively drug-resistant tuberculosis. Lancet. 370:1464-1465, 2007.
85.Ueng YF, Shyu CC, Lin YL, Park SS, Liao JF, Chen CF. Effects of baicalein and wogonin on drug-metabolizing enzymes in C57BL/6J mice. Life Sci. 67:2189-200, 2000.
86.Vuilleumier N, Rossier MF, Chiappe A, Degoumois F, Dayer P, Mermillod B, Nicod L, Desmeules J, Hochstrasser D. CYP2E1 genotype and isoniazid-induced hepatotoxicity in patients treated for latent tuberculosis. Eur J Clin Pharmacol. 62:423-429, 2006.
87.Wacher VJ, Wu CY, Benet LZ. Overlapping substrate specific cities and tissue distribution of cytochrome P450 3A and P-glycoprotein. Implications for drug delivery and activity in cancer chemotherapy. Mol Carcinog. 13:129-134, 1995.
88.Wen X, Wang JS, Neuvonen PJ, Backman JT. Isoniazid is a mechanism-based inhibitor of cytochrome P450 1A2, 2A6, 2C19 and 3A4 isoforms in human liver microsomes. Eur J Clin Pharmacol. 57:799-804, 2002.
89.Whitehouse LW, Lodge BA, By AW, Thomas BH. Metabolic disposition of pyrazinamide in the rat: identification of a novel in vivo metabolite common to both rat and human. Biopharm Drug Dispos. 8:307-318, 1987.
90.Wojnowski L, Kamdem LK. Clinical implications of CYP3A polymorphisms. Expert Opin Drug Metab Toxicol. 2:171-182, 2006.
91.Wong FW, Chan WY, Lee SS. Resistance to carbon tetrachloride-induced hepatotoxicity in mice which lack CYP2E1 expression. Toxicol Appl Pharmacol. 153:109-118, 1998.
92.Wu JC, Lee SD, Yeh PF, Chan CY, Wang YJ, Huang YS. Isoniazid-rifampin-induced hepatitis in hepatitis B carriers. Gastroenterol. 98:502-504, 1990.
93.Yamada S, Richardson K, Tang M, Halaschek-Wiener J, Cook VJ, Fitzgerald JM, Elwood K, Marra F, Brooks-Wilson A. Genetic variation in carboxylesterase genes and susceptibility to isoniazid-induced hepatotoxicity. Pharmacogenomics J. 10:524-536, 2010.
94.Yee D, Valiquette C, Pelletier M, Parisien I, Rocher I, Menzies D. Incidence of serious side effects from first-line antituberculosis drugs among patients treated for active tuberculosis. Am J Respir Crit Care Med. 167:1472-1477, 2003.
95.Yue J, Peng RX, Yang J, Kong R, Liu J. CYP2E1 mediated isoniazid-induced hepatotoxicity in rats. Acta Pharmacol Sin. 25: 699-704, 2004.
96.Zhou S, Gao Y, Jiang W, Huang M, Xu A, Paxton JW. Interactions of herbs with cytochrome P450. Drug Metab Rev. 35:35-98, 2003.
97.FDA Center for Drug Evaluation and Research (CDER) Pharmacokinetics in patients with impaired hepatic function: Study design, data analysis, and impact on dosing and labeling. Guidance for Industry, U.S. Department of Health and Human Service. p5, 2003.
98.Pyrazinamide (Lederle). In: PDR Physicians' desk reference. 48th. Montvale, NJ: Medical Economics Data 2000; 1185-1186.
99.Taiwan Guidelines for TB Diagnosis & Treatment 4th , 2011.
100. WHO. Guidelines for the programmatic management of drug-resistant tuberculosis: Emergency update 2008 (WHO/HTM/TB/2008.402). Geneva, Switzerland: WHO, 2008.
101. WHO. Treatment of Tuberculosis: Guidelines for National Programmes. 4th ed. (WHO/HTM/TB/2009.420).Geneva, Switzerland: WHO, 2009.
102. WHO. Guidelines for the programmatic management for drug-resistant tuberculosis - 2011 update (WHO/HTM/TB/2011.6). Geneva, Switzerland: WHO, 2011.
103. WHO. Global tuberculosis control:WHO report 2012 (WHO/HTM/TB/2012.6). Geneva, Switzerland: WHO, 2012.
104. Grange JM. Immunophysiology and Immunopathology. In: Davis PDO, ed. Clinical Tuberculosis, 3rd ed. London: Arnold; 2003, p88-104.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊