(3.236.6.6) 您好!臺灣時間:2021/04/22 19:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林佳玟
研究生(外文):Chia-Wen Lin
論文名稱:Sarm1蛋白參與免疫反應之調控並影響神經突 觸活性進而影響模式小鼠之自閉症表型
論文名稱(外文):Sarm1, a molecule involved in innate immunity, regulates synaptic plasticity and autistic-like behaviors in mice
指導教授:薛一蘋
指導教授(外文):Yi-Ping Hsueh
口試委員:閔明源黃怡萱王廷方鄭珮琳
口試委員(外文):Ming-Yuan MinYi-Shuian HuangTing-Fang WangPei-Lin Cheng
口試日期:2013-06-18
學位類別:博士
校院名稱:國防醫學院
系所名稱:生命科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:84
中文關鍵詞:神經
外文關鍵詞:Sarm1
相關次數:
  • 被引用被引用:0
  • 點閱點閱:191
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
神經系統發育異常被認為會導致特定精神疾病之形成,包括自閉症,精神分裂以及注意力不足過動症。特定之環境因子與基因缺陷已被證實與神經系統發育異常密切相關。最為人知的環境因子為妊娠早期感染所導致之免疫系統活化而引起之大量細胞激素表現。暴露在異常的細胞激素環境被認為是影響胎兒神經發育病導致精神疾病之主因,但詳細機制未明。在此研究,我著重於Sarm1蛋白在神經細胞免疫反應中所扮演的角色及其與神經發育缺陷所導致疾病之相關性。早期在先天性免疫系統的研究,發現Sarm1可透過競爭TRIF蛋白而調控類鐸受體三、四之訊息傳導,因此被認為是先天免疫系統中的負調控因子。本實驗室的近期研究發現,Sarm1在大腦中的表現量極高並且透過影響細胞骨架中微管的穩定性而調控神經元型態發育過程。Sarm1具有同時調控類鐸受體之訊息傳遞及神經元形態發育過程的分子特性,讓我們認為Sarm1可能是串聯先天免疫反應以及神經發育的重要關鍵。因此我建立了利用微型核糖核酸降低Sarm1表現量的基因轉殖小鼠模型以利於在活體動物中研究Sarm1在大腦的功能。研究結果顯示,缺少Sarm1表現會造成胎鼠大腦及成鼠皮質中細胞激素的表現失衡。同時,降低Sarm1表現會使小鼠大腦變小並導致類似自閉症之行為,包括的缺乏認知彈性,學習障礙以及減少社會行為。除了影響神經細胞型態發育,Sarm1亦涉及突觸可塑性之調控。在海馬迴CA1區域,缺少Sarm1表現的小鼠其由代謝性麩胺酸受體所媒介的長期抑制效應嚴重缺損,然而由NMDA受體所媒介的突觸可塑性則有增強現象。進一步分析突觸之蛋白質表現後發現突觸後的組成分子在Sarm1缺少小鼠中的表現量與野生型小鼠不同。這些結果顯示Sarm1對於維持突觸組成及功能的重要性。對Sarm1缺少小鼠的施予正向異位性調節分子(CDPPB),來提高代謝性麩胺酸受體功能後,突觸活性以及類自閉症行為即可以獲得改善。此結果指出Sarm1藉由調控代謝性麩胺酸受體的活性而影響小鼠行為表現並且呼應目前代謝性麩胺酸受體被認為在自閉症所扮演的重要角色。總結本篇論文的研究證實了Sarm1可以作用於調控神經元的先天免疫系統和形態發生並影響突觸可塑性。透過這些調控機制,進而在Sarm1缺少的情況下導致小鼠類似自閉症行為。 
Neurodevelopmental disorders, including autism, schizophrenia and attention deficiency and hyperactivity disorder, are complex neuropsychiatric diseases. Both environmental factors and genetic deficits contribute to the pathogenesis of neurodevelopmental disorders. The most well-known environmental factor is prenatal immune challenge caused by infection. Robust cytokine production induced by inflammatory response is believe to affect neural development and leads to several psychiatric disorders. However, the detail mechanism is not clear yet. In this study, I focus on the role of Sarm1 in neuronal immunity and its involvement in neurodevelopmental disorder. Sarm1is originally identified as a negative regulator of TRIF-dependent TLR3/TLR4 pathways in peripheral innate immune system. We recently showed that Sarm1 is highly expressed in brain and plays critical roles in regulating neural morphogenesis by regulating microtubule stability. The dual roles of sarm1 in both TLR3/4 signaling and neuronal morphogenesis suggest a possibility for Sarm1 to mediate crosstalk between innate immunity and neurodevelopment. Therefore, I established Sarm1 knockdown transgenic mice model to study its function in vivo. In Sarm1 knockdown mice, the expression of innate immunity related cytokines were dysregulated at both E14.5 fetal brain and adult cortex. Sarm1 knockdown also resulted in brain size reduction and caused autistic-like behaviors, including cognitive inflexibility, impaired associative learning and reduced social interaction. In addition to neuronal morphogenesis, Sarm1 also modulated synaptic plasticity. Sarm1 knockdown mice had severe deficits in mGluR-dependent LTD but enhanced NMDA receptor-dependent LTP in hippocampal CA1. The protein composition of post-synaptic density was also altered in Sarm1 knockdown mice, suggesting its role in maintaining synaptic homeostasis. Applying the positive allosteric modulator of mGluR5, CDPPB, can restore both LTD defects and autistic-like behaviors. These results suggest significance of mGluR5 mediating responses in Sarm1 knockdown mice and echo the mGluR theory in the etiology of autism. In conclusion, our study demonstrates a role of Sarm1 in the neuronal innate immunity, neuronal morphogenesis and synaptic plasticity. Through these regulations, Sarm1 knockdown causes autistic-like behaviors in mouse.
中文摘要 III
ABSTRACT IV
INTRODUCTION 1
1. Brain development and autism 1
2. Innate immunity and brain development 4
3. Sarm1 is an evolutionary conserved protein containing multiple protein interaction motifs 6
4. The role of Sarm1 in innate immune system 7
5. The role of Sarm1 in neuron 8
SPECIFIC AIMS 11
Material and method 12
1. Immunohistochemistry 12
2. Brain anatomic analysis 13
3. Western blot analysis 14
4. Quantitative RT-PCR 14
5. Generation of Sarm1 knockdown transgenic mice 16
6. Animals and behavior assays 17
7. Electrophysiology 23
8. Antibodies 25
9. Calcium imaging 27
10. Data and statistical analyses 27
RESULTS 28
1. General characterization of Sarm1 28
2. Generation of Sarm1 miRNA knockdown transgenic mouse model 31
3. Reduction of Sarm1 dysregulates cytokine expression in brain 32
4. Sarm1 knockdown affects brain development 34
5. Sarm1 knockdown express autistic-like behaviors 36
6. Sarml knockdown leads to hypersynaptic responses upon glutamate Stimulation 40
7. Sarm1 knockdown disturbs synaptic plasticity 41
8. Behavior impairment in Sarm1 knockdown mice can be rescued by mGluR5 activation 44
Discussions 45
1. Neuroinflammation in ASD 45
2. The mechanism of Sarm1 in regulating synaptic plasticity 456
3. Different function of Sarm1 in different cell compartment or brain region …48
4. Interaction between prenatal immune activation and Sarm1 deficiency in brain brain development disorders 49
Reference 52
Figures and legend 59

Reference
Albensi, B.C., and Mattson, M.P. (2000). Evidence for the involvement of TNF and NF-kappaB in hippocampal synaptic plasticity. Synapse 35, 151-159.
Anagnostou, E., and Taylor, M.J. (2011). Review of neuroimaging in autism spectrum disorders: what have we learned and where we go from here. Molecular autism 2, 4.
Ascano, M., Jr., Mukherjee, N., Bandaru, P., Miller, J.B., Nusbaum, J.D., Corcoran, D.L., Langlois, C., Munschauer, M., Dewell, S., Hafner, M., et al. (2012). FMRP targets distinct mRNA sequence elements to regulate protein expression. Nature 492, 382-386.
Ashdown, H., Dumont, Y., Ng, M., Poole, S., Boksa, P., and Luheshi, G.N. (2006). The role of cytokines in mediating effects of prenatal infection on the fetus: implications for schizophrenia. Molecular psychiatry 11, 47-55.
Atladottir, H.O., Thorsen, P., Ostergaard, L., Schendel, D.E., Lemcke, S., Abdallah, M., and Parner, E.T. (2010). Maternal infection requiring hospitalization during pregnancy and autism spectrum disorders. Journal of autism and developmental disorders 40, 1423-1430.
Bhakar, A.L., Dolen, G., and Bear, M.F. (2012). The pathophysiology of fragile X (and what it teaches us about synapses). Annual review of neuroscience 35, 417-443.
Bilbo, S.D., and Schwarz, J.M. (2009). Early-life programming of later-life brain and behavior: a critical role for the immune system. Frontiers in behavioral neuroscience 3, 14.
Bilousova, T.V., Dansie, L., Ngo, M., Aye, J., Charles, J.R., Ethell, D.W., and Ethell, I.M. (2009). Minocycline promotes dendritic spine maturation and improves behavioural performance in the fragile X mouse model. Journal of medical genetics 46, 94-102.
Brown, A.S., Hooton, J., Schaefer, C.A., Zhang, H., Petkova, E., Babulas, V., Perrin, M., Gorman, J.M., and Susser, E.S. (2004). Elevated maternal interleukin-8 levels and risk of schizophrenia in adult offspring. The American journal of psychiatry 161, 889-895.
Buka, S.L., Tsuang, M.T., Torrey, E.F., Klebanoff, M.A., Wagner, R.L., and Yolken, R.H. (2001). Maternal cytokine levels during pregnancy and adult psychosis. Brain, behavior, and immunity 15, 411-420.
Cameron, J.S., Alexopoulou, L., Sloane, J.A., DiBernardo, A.B., Ma, Y., Kosaras, B., Flavell, R., Strittmatter, S.M., Volpe, J., Sidman, R., et al. (2007). Toll-like receptor 3 is a potent negative regulator of axonal growth in mammals. The Journal of neuroscience : the official journal of the Society for Neuroscience 27, 13033-13041.
Carty, M., Goodbody, R., Schroder, M., Stack, J., Moynagh, P.N., and Bowie, A.G. (2006). The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling. Nature immunology 7, 1074-1081.
Chen, C.Y., Lin, C.W., Chang, C.Y., Jiang, S.T., and Hsueh, Y.P. (2011a). Sarm1, a negative regulator of innate immunity, interacts with syndecan-2 and regulates neuronal morphology. The Journal of cell biology 193, 769-784.
Chen, R., Jiao, Y., and Herskovits, E.H. (2011b). Structural MRI in autism spectrum disorder. Pediatric research 69, 63R-68R.
Chen, Y.K., and Hsueh, Y.P. (2012). Cortactin-binding protein 2 modulates the mobility of cortactin and regulates dendritic spine formation and maintenance. The Journal of neuroscience : the official journal of the Society for Neuroscience 32, 1043-1055.
Chuang, C.F., and Bargmann, C.I. (2005). A Toll-interleukin 1 repeat protein at the synapse specifies asymmetric odorant receptor expression via ASK1 MAPKKK signaling. Genes & development 19, 270-281.
Chudley, A.E., Gutierrez, E., Jocelyn, L.J., and Chodirker, B.N. (1998). Outcomes of genetic evaluation in children with pervasive developmental disorder. Journal of developmental and behavioral pediatrics : JDBP 19, 321-325.
Clarke, M.C., Tanskanen, A., Huttunen, M., Whittaker, J.C., and Cannon, M. (2009). Evidence for an interaction between familial liability and prenatal exposure to infection in the causation of schizophrenia. The American journal of psychiatry 166, 1025-1030.
Couillault, C., Pujol, N., Reboul, J., Sabatier, L., Guichou, J.F., Kohara, Y., and Ewbank, J.J. (2004). TLR-independent control of innate immunity in Caenorhabditis elegans by the TIR domain adaptor protein TIR-1, an ortholog of human SARM. Nature immunology 5, 488-494.
Crack, P.J., and Bray, P.J. (2007). Toll-like receptors in the brain and their potential roles in neuropathology. Immunology and cell biology 85, 476-480.
De Miranda, J., Yaddanapudi, K., Hornig, M., Villar, G., Serge, R., and Lipkin, W.I. (2010). Induction of Toll-like receptor 3-mediated immunity during gestation inhibits cortical neurogenesis and causes behavioral disturbances. mBio 1.
Diez-Roux, G., Banfi, S., Sultan, M., Geffers, L., Anand, S., Rozado, D., Magen, A., Canidio, E., Pagani, M., Peluso, I., et al. (2011). A high-resolution anatomical atlas of the transcriptome in the mouse embryo. PLoS biology 9, e1000582.
Durand, C.M., Betancur, C., Boeckers, T.M., Bockmann, J., Chaste, P., Fauchereau, F., Nygren, G., Rastam, M., Gillberg, I.C., Anckarsater, H., et al. (2007). Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nature genetics 39, 25-27.
Geschwind, D.H., and Levitt, P. (2007). Autism spectrum disorders: developmental disconnection syndromes. Current opinion in neurobiology 17, 103-111.
Gilmore, J.H., Fredrik Jarskog, L., Vadlamudi, S., and Lauder, J.M. (2004). Prenatal infection and risk for schizophrenia: IL-1beta, IL-6, and TNFalpha inhibit cortical neuron dendrite development. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 29, 1221-1229.
Harlow, E.G., Till, S.M., Russell, T.A., Wijetunge, L.S., Kind, P., and Contractor, A. (2010). Critical period plasticity is disrupted in the barrel cortex of FMR1 knockout mice. Neuron 65, 385-398.
Henn, A., Lund, S., Hedtjarn, M., Schrattenholz, A., Porzgen, P., and Leist, M. (2009). The suitability of BV2 cells as alternative model system for primary microglia cultures or for animal experiments examining brain inflammation. Altex 26, 83-94.
Huber, A.H., Nelson, W.J., and Weis, W.I. (1997). Three-dimensional structure of the armadillo repeat region of beta-catenin. Cell 90, 871-882.
Hutsler, J.J., and Zhang, H. (2010). Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain research 1309, 83-94.
Ikegaya, Y., Delcroix, I., Iwakura, Y., Matsuki, N., and Nishiyama, N. (2003). Interleukin-1beta abrogates long-term depression of hippocampal CA1 synaptic transmission. Synapse 47, 54-57.
Juttler, E., Tarabin, V., and Schwaninger, M. (2002). Interleukin-6 (IL-6): a possible neuromodulator induced by neuronal activity. The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry 8, 268-275.
Kelleher, R.J., 3rd, and Bear, M.F. (2008). The autistic neuron: troubled translation? Cell 135, 401-406.
Kim, C.A., and Bowie, J.U. (2003). SAM domains: uniform structure, diversity of function. Trends in biochemical sciences 28, 625-628.
Kim, H.G., Kishikawa, S., Higgins, A.W., Seong, I.S., Donovan, D.J., Shen, Y., Lally, E., Weiss, L.A., Najm, J., Kutsche, K., et al. (2008). Disruption of neurexin 1 associated with autism spectrum disorder. American journal of human genetics 82, 199-207.
Kim, Y., Zhou, P., Qian, L., Chuang, J.Z., Lee, J., Li, C., Iadecola, C., Nathan, C., and Ding, A. (2007). MyD88-5 links mitochondria, microtubules, and JNK3 in neurons and regulates neuronal survival. The Journal of experimental medicine 204, 2063-2074.
Kinney, G.G., O'Brien, J.A., Lemaire, W., Burno, M., Bickel, D.J., Clements, M.K., Chen, T.B., Wisnoski, D.D., Lindsley, C.W., Tiller, P.R., et al. (2005). A novel selective positive allosteric modulator of metabotropic glutamate receptor subtype 5 has in vivo activity and antipsychotic-like effects in rat behavioral models. The Journal of pharmacology and experimental therapeutics 313, 199-206.
Lathia, J.D., Okun, E., Tang, S.C., Griffioen, K., Cheng, A., Mughal, M.R., Laryea, G., Selvaraj, P.K., ffrench-Constant, C., Magnus, T., et al. (2008). Toll-like receptor 3 is a negative regulator of embryonic neural progenitor cell proliferation. The Journal of neuroscience : the official journal of the Society for Neuroscience 28, 13978-13984.
Laumonnier, F., Bonnet-Brilhault, F., Gomot, M., Blanc, R., David, A., Moizard, M.P., Raynaud, M., Ronce, N., Lemonnier, E., Calvas, P., et al. (2004). X-linked mental retardation and autism are associated with a mutation in the NLGN4 gene, a member of the neuroligin family. American journal of human genetics 74, 552-557.
Lee, S.J., Escobedo-Lozoya, Y., Szatmari, E.M., and Yasuda, R. (2009). Activation of CaMKII in single dendritic spines during long-term potentiation. Nature 458, 299-304.
Li, X., Chauhan, A., Sheikh, A.M., Patil, S., Chauhan, V., Li, X.M., Ji, L., Brown, T., and Malik, M. (2009). Elevated immune response in the brain of autistic patients. Journal of neuroimmunology 207, 111-116.
Li, X.M., Li, C.C., Yu, S.S., Chen, J.T., Sabapathy, K., and Ruan, D.Y. (2007). JNK1 contributes to metabotropic glutamate receptor-dependent long-term depression and short-term synaptic plasticity in the mice area hippocampal CA1. The European journal of neuroscience 25, 391-396.
Li, Y., Du, X.F., Liu, C.S., Wen, Z.L., and Du, J.L. (2012). Reciprocal regulation between resting microglial dynamics and neuronal activity in vivo. Developmental cell 23, 1189-1202.
Libbey, J.E., Sweeten, T.L., McMahon, W.M., and Fujinami, R.S. (2005). Autistic disorder and viral infections. Journal of neurovirology 11, 1-10.
Lin, Y.L., Lei, Y.T., Hong, C.J., and Hsueh, Y.P. (2007). Syndecan-2 induces filopodia and dendritic spine formation via the neurofibromin-PKA-Ena/VASP pathway. The Journal of cell biology 177, 829-841.
Lisman, J., Schulman, H., and Cline, H. (2002). The molecular basis of CaMKII function in synaptic and behavioural memory. Nature reviews Neuroscience 3, 175-190.
Lush, M.E., Li, Y., Kwon, C.H., Chen, J., and Parada, L.F. (2008). Neurofibromin is required for barrel formation in the mouse somatosensory cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience 28, 1580-1587.
Ma, Y., Li, J., Chiu, I., Wang, Y., Sloane, J.A., Lu, J., Kosaras, B., Sidman, R.L., Volpe, J.J., and Vartanian, T. (2006). Toll-like receptor 8 functions as a negative regulator of neurite outgrowth and inducer of neuronal apoptosis. The Journal of cell biology 175, 209-215.
Marz, P., Cheng, J.G., Gadient, R.A., Patterson, P.H., Stoyan, T., Otten, U., and Rose-John, S. (1998). Sympathetic neurons can produce and respond to interleukin 6. Proceedings of the National Academy of Sciences of the United States of America 95, 3251-3256.
McAfoose, J., and Baune, B.T. (2009). Evidence for a cytokine model of cognitive function. Neuroscience and biobehavioral reviews 33, 355-366.
McAlonan, G.M., Cheung, V., Cheung, C., Suckling, J., Lam, G.Y., Tai, K.S., Yip, L., Murphy, D.G., and Chua, S.E. (2005). Mapping the brain in autism. A voxel-based MRI study of volumetric differences and intercorrelations in autism. Brain : a journal of neurology 128, 268-276.
McKimmie, C.S., Johnson, N., Fooks, A.R., and Fazakerley, J.K. (2005). Viruses selectively upregulate Toll-like receptors in the central nervous system. Biochemical and biophysical research communications 336, 925-933.
Meyer, U., Feldon, J., and Yee, B.K. (2009). A review of the fetal brain cytokine imbalance hypothesis of schizophrenia. Schizophrenia bulletin 35, 959-972.
Meyer, U., Murray, P.J., Urwyler, A., Yee, B.K., Schedlowski, M., and Feldon, J. (2008). Adult behavioral and pharmacological dysfunctions following disruption of the fetal brain balance between pro-inflammatory and IL-10-mediated anti-inflammatory signaling. Molecular psychiatry 13, 208-221.
Meyer, U., Nyffeler, M., Engler, A., Urwyler, A., Schedlowski, M., Knuesel, I., Yee, B.K., and Feldon, J. (2006). The time of prenatal immune challenge determines the specificity of inflammation-mediated brain and behavioral pathology. The Journal of neuroscience : the official journal of the Society for Neuroscience 26, 4752-4762.
Miley, M. (2011). Missed connections. Nature medicine 17, 408-410.
Mink, M., Fogelgren, B., Olszewski, K., Maroy, P., and Csiszar, K. (2001). A novel human gene (SARM) at chromosome 17q11 encodes a protein with a SAM motif and structural similarity to Armadillo/beta-catenin that is conserved in mouse, Drosophila, and Caenorhabditis elegans. Genomics 74, 234-244.
Moretti, P., Bouwknecht, J.A., Teague, R., Paylor, R., and Zoghbi, H.Y. (2005). Abnormalities of social interactions and home-cage behavior in a mouse model of Rett syndrome. Human molecular genetics 14, 205-220.
Morrow, E.M., Yoo, S.Y., Flavell, S.W., Kim, T.K., Lin, Y., Hill, R.S., Mukaddes, N.M., Balkhy, S., Gascon, G., Hashmi, A., et al. (2008). Identifying autism loci and genes by tracing recent shared ancestry. Science 321, 218-223.
Moult, P.R., Correa, S.A., Collingridge, G.L., Fitzjohn, S.M., and Bashir, Z.I. (2008). Co-activation of p38 mitogen-activated protein kinase and protein tyrosine phosphatase underlies metabotropic glutamate receptor-dependent long-term depression. The Journal of physiology 586, 2499-2510.
Muhle, R., Trentacoste, S.V., and Rapin, I. (2004). The Genetics of Autism. Pediatrics 113, e472-e486.
Nadler, J.J., Moy, S.S., Dold, G., Trang, D., Simmons, N., Perez, A., Young, N.B., Barbaro, R.P., Piven, J., Magnuson, T.R., et al. (2004). Automated apparatus for quantitation of social approach behaviors in mice. Genes, brain, and behavior 3, 303-314.
O'Neill, L.A., and Bowie, A.G. (2007). The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nature reviews Immunology 7, 353-364.
O'Neill, L.A., Fitzgerald, K.A., and Bowie, A.G. (2003). The Toll-IL-1 receptor adaptor family grows to five members. Trends in immunology 24, 286-290.
Okun, E., Griffioen, K., Barak, B., Roberts, N.J., Castro, K., Pita, M.A., Cheng, A., Mughal, M.R., Wan, R., Ashery, U., et al. (2010a). Toll-like receptor 3 inhibits memory retention and constrains adult hippocampal neurogenesis. Proceedings of the National Academy of Sciences of the United States of America 107, 15625-15630.
Okun, E., Griffioen, K.J., Son, T.G., Lee, J.H., Roberts, N.J., Mughal, M.R., Hutchison, E., Cheng, A., Arumugam, T.V., Lathia, J.D., et al. (2010b). TLR2 activation inhibits embryonic neural progenitor cell proliferation. Journal of neurochemistry 114, 462-474.
Onore, C., Careaga, M., and Ashwood, P. (2012). The role of immune dysfunction in the pathophysiology of autism. Brain, behavior, and immunity 26, 383-392.
Osterloh, J.M., Yang, J., Rooney, T.M., Fox, A.N., Adalbert, R., Powell, E.H., Sheehan, A.E., Avery, M.A., Hackett, R., Logan, M.A., et al. (2012). dSarm/Sarm1 is required for activation of an injury-induced axon death pathway. Science 337, 481-484.
Pardo, C.A., Azhagiri, A., Lawler, C., and F., Z.-V.A. (2009). Expression profiling of TLR signaling pathway genes in brain tissue from patients with autism. International Meeting for Autism Research.
Pardo, C.A., Vargas, D.L., and Zimmerman, A.W. (2005). Immunity, neuroglia and neuroinflammation in autism. International review of psychiatry 17, 485-495.
Paribello, C., Tao, L., Folino, A., Berry-Kravis, E., Tranfaglia, M., Ethell, I.M., and Ethell, D.W. (2010). Open-label add-on treatment trial of minocycline in fragile X syndrome. BMC neurology 10, 91.
Parrish, J.Z., Xu, P., Kim, C.C., Jan, L.Y., and Jan, Y.N. (2009). The microRNA bantam functions in epithelial cells to regulate scaling growth of dendrite arbors in drosophila sensory neurons. Neuron 63, 788-802.
Patterson, P.H. (2009). Immune involvement in schizophrenia and autism: etiology, pathology and animal models. Behavioural brain research 204, 313-321.
Patterson, P.H. (2011). Maternal infection and immune involvement in autism. Trends in molecular medicine 17, 389-394.
Paul, S., Ricour, C., Sommereyns, C., Sorgeloos, F., and Michiels, T. (2007). Type I interferon response in the central nervous system. Biochimie 89, 770-778.
Penzes, P., Cahill, M.E., Jones, K.A., VanLeeuwen, J.E., and Woolfrey, K.M. (2011). Dendritic spine pathology in neuropsychiatric disorders. Nature neuroscience 14, 285-293.
Pickering, M., Cumiskey, D., and O'Connor, J.J. (2005). Actions of TNF-alpha on glutamatergic synaptic transmission in the central nervous system. Experimental physiology 90, 663-670.
Pousset, F. (1994). Developmental expression of cytokine genes in the cortex and hippocampus of the rat central nervous system. Brain research Developmental brain research 81, 143-146.
Pujol, N., Link, E.M., Liu, L.X., Kurz, C.L., Alloing, G., Tan, M.W., Ray, K.P., Solari, R., Johnson, C.D., and Ewbank, J.J. (2001). A reverse genetic analysis of components of the Toll signaling pathway in Caenorhabditis elegans. Current biology : CB 11, 809-821.
Rees, S., and Inder, T. (2005). Fetal and neonatal origins of altered brain development. Early human development 81, 753-761.
Rodriguez, J.I., and Kern, J.K. (2011). Evidence of microglial activation in autism and its possible role in brain underconnectivity. Neuron glia biology 7, 205-213.
Rolls, A., Shechter, R., London, A., Ziv, Y., Ronen, A., Levy, R., and Schwartz, M. (2007). Toll-like receptors modulate adult hippocampal neurogenesis. Nature cell biology 9, 1081-1088.
Schmeisser, M.J., Ey, E., Wegener, S., Bockmann, J., Stempel, A.V., Kuebler, A., Janssen, A.L., Udvardi, P.T., Shiban, E., Spilker, C., et al. (2012). Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2. Nature 486, 256-260.
Schneider, T., and Przewlocki, R. (2005). Behavioral alterations in rats prenatally exposed to valproic acid: animal model of autism. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 30, 80-89.
Sheng, M., and Kim, E. (2000). The Shank family of scaffold proteins. Journal of cell science 113 ( Pt 11), 1851-1856.
Smith, S.E., Li, J., Garbett, K., Mirnics, K., and Patterson, P.H. (2007). Maternal immune activation alters fetal brain development through interleukin-6. The Journal of neuroscience : the official journal of the Society for Neuroscience 27, 10695-10702.
Strominger, R.N., and Woolsey, T.A. (1987). Templates for locating the whisker area in fresh flattened mouse and rat cortex. Journal of neuroscience methods 22, 113-118.
Suh, H.S., Brosnan, C.F., and Lee, S.C. (2009). Toll-like receptors in CNS viral infections. Current topics in microbiology and immunology 336, 63-81.
Swann, J.W., Smith, K.L., and Lee, C.L. (2001). Neuronal activity and the establishment of normal and epileptic circuits during brain development. International review of neurobiology 45, 89-118.
Szretter, K.J., Samuel, M.A., Gilfillan, S., Fuchs, A., Colonna, M., and Diamond, M.S. (2009). The immune adaptor molecule SARM modulates tumor necrosis factor alpha production and microglia activation in the brainstem and restricts West Nile Virus pathogenesis. Journal of virology 83, 9329-9338.
Toal, F., Bloemen, O.J., Deeley, Q., Tunstall, N., Daly, E.M., Page, L., Brammer, M.J., Murphy, K.C., and Murphy, D.G. (2009). Psychosis and autism: magnetic resonance imaging study of brain anatomy. The British journal of psychiatry : the journal of mental science 194, 418-425.
Vallieres, L., Campbell, I.L., Gage, F.H., and Sawchenko, P.E. (2002). Reduced hippocampal neurogenesis in adult transgenic mice with chronic astrocytic production of interleukin-6. The Journal of neuroscience : the official journal of the Society for Neuroscience 22, 486-492.
Vargas, D.L., Nascimbene, C., Krishnan, C., Zimmerman, A.W., and Pardo, C.A. (2005). Neuroglial activation and neuroinflammation in the brain of patients with autism. Annals of neurology 57, 67-81.
Walsh, C.A., Morrow, E.M., and Rubenstein, J.L. (2008). Autism and brain development. Cell 135, 396-400.
Ward, L.A., and Massa, P.T. (1995). Neuron-specific regulation of major histocompatibility complex class I, interferon-beta, and anti-viral state genes. Journal of neuroimmunology 58, 145-155.
Won, H., Lee, H.R., Gee, H.Y., Mah, W., Kim, J.I., Lee, J., Ha, S., Chung, C., Jung, E.S., Cho, Y.S., et al. (2012). Autistic-like social behaviour in Shank2-mutant mice improved by restoring NMDA receptor function. Nature 486, 261-265.
Wrenn, C.C., Harris, A.P., Saavedra, M.C., and Crawley, J.N. (2003). Social transmission of food preference in mice: methodology and application to galanin-overexpressing transgenic mice. Behavioral neuroscience 117, 21-31.
Zimmerman, A.W., Jyonouchi, H., Comi, A.M., Connors, S.L., Milstien, S., Varsou, A., and Heyes, M.P. (2005). Cerebrospinal fluid and serum markers of inflammation in autism. Pediatric neurology 33, 195-201.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔