(3.238.174.50) 您好!臺灣時間:2021/04/20 22:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃煒婷
研究生(外文):Huang, Wei-Ting
論文名稱:建立Pyrosequencing平台進行肝癌甲基化之分析
論文名稱(外文):Establish a Pyrosequencing Platform to Analyze DNA Methylation in Hepatocellular Carcinoma
指導教授:林雅雯林雅雯引用關係
指導教授(外文):Lin, Ya-Wen
口試委員:施宇隆劉沁瑜
口試委員(外文):Shih, Yu-LuengLiu, Chin-Yu
口試日期:2013-05-30
學位類別:碩士
校院名稱:國防醫學院
系所名稱:微生物及免疫學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:82
中文關鍵詞:焦磷酸測序DNA 甲基化肝癌
外文關鍵詞:PyrosequencingDNA MethylationHepatocellular carcinoma
相關次數:
  • 被引用被引用:0
  • 點閱點閱:886
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
肝癌(Hepatocellular carcinoma,簡稱HCC)在全世界是個高發生率與高死亡率的癌症。許多研究已指出,異常的DNA甲基化模式在肝癌的形成中扮演著重要的角色。實驗室先前利用Methylation array篩選出許多在肝癌檢體中DNA甲基化之模式異常的候選基因;並且,使用甲基化專一性聚合酶鏈鎖反應(MS-PCR)與亞硫酸鹽定序(Bisulfite sequencing)驗證Methylation array的結果。雖然MS-PCR與bisulfite sequencing為分析DNA甲基化的標準方法,但這兩種方法只能提供定性或半定量的分析結果。Pyrosequencing為近年來新發展的定序技術,可以定性與定量分析DNA甲基化程度。因此,本論文的目標是建立Pyrosequencing平台用以進行DNA甲基化分析。
本論文先以控制組基因GLOXD1驗證Pyrosequencing平台分析之結果與MS-PCR和Bisulfite sequencing分析之結果一致。再以Pyrosequencing平台驗證候選基因在肝癌細胞與肝癌組織檢體裡存在有高度甲基化現象(ALDH1A與CALCA)或低度甲基化現象(DNMT3A1與DNMT3A2)。研究結果顯示我們成功的建立Pyrosequencing平台,並且證明它是個好的實驗平台,可應用於驗證候選基因的DNA甲基化程度。
Hepatocellular carcinoma (HCC) is one of the most common cancers in the world and is a leading cause of cancer death. Differential DNA methylation pattern plays an important role in the development of HCC. Previously, aberrant methylated candidate genes in HCC were selected using methylation array and validated by methylation-specific PCR (MS-PCR) and bisulfite sequencing. Although MS-PCR and bisulfite sequencing are the standard methods methylation analysis, they only provide qualitative or semi-quantitative data. Recently, pyrosequencing, a sequence-based detection technology, has been shown that it can accurately provide quantitative data for DNA mehtylation. The aim of this study is to establish a pyrosequencing platform for DNA methylation analysis.
In this study, we first established the pyrosequencing platform using a known gene GLOXD1, which is a hypermethylated gene. We then tested the feasibility of this platform in DNA methylation analysis compared with other methods, such as MS-PCR and bisulfite sequencing. Aberrant methylated candidate genes, including ALDH1A2, CALCA, DNMT3A1 and DNMT3A2, were validated as hypermethylated or hypomethylated in HCC cell lines and tissues by pyrosequencing. These data demonstrate that pyrosequencing platform is established and it is a good strategy to validate methylation levels of candidate genes.
第一章、緒論......................................1
第一節、肝癌的風險因子與致病機轉.....................1
第二節、DNA甲基化作用與癌症形成之相關性...............2
第三節、DNA甲基化轉移酶與癌症形成之相關性.............3
第四節、分析DNA甲基化的方法及限制....................4
第五節、研究動機..................................8
第二章、材料與方法................................9
第一節、分析候選基因在細胞株與組織檢體之DNA甲基化程度...9
壹、細胞株與組織檢體來源...........................9
貳、細胞株DNA萃取................................9
参、組織檢體DNA萃取..............................10
肆、亞硫酸鹽轉換(Bisulfite conversion)...........11
伍、焦磷酸測序(Pyrosequencing)Primer設計..........12
陸、聚合酶鏈鎖反應(Polymerase chain reaction).....12
柒、巢式聚合酶鏈鎖反應(Nested-PCR)................14
捌、焦磷酸測序(Pyrosequencing)...................15
第三章、結果......................................17
第一節、建立Pyrosequencing平台.....................17
壹、細胞株裡GLOXD1啟動子區域甲基化程度................17
貳、組織檢體裡GLOXD1啟動子區域甲基化程度..............18
第二節、以Pyrosequencing分析候選基因的DNA甲基化程度...19
壹、候選基因ALDH1A2啟動子區域甲基化程度之分析..........19
貳、候選基因CALCA啟動子區域甲基化程度之分析............21
参、候選基因DNMT3A1啟動子區域甲基化程度之分析..........22
肆、候選基因DNMT3A2啟動子區域甲基化程度之分析..........24
第四章、討論.......................................26
第五章、結論...................................... 33
第六章、參考文獻....................................80

表一、候選基因之Pyrosequencing primer...............34
表二、GLOXD1啟動子區域甲基化程度之總表.................36
表三、ALDH1A2啟動子區域甲基化程度之總表................37
表四、CALCA啟動子區域甲基化程度之總表..................40
表五、DNMT3A1啟動子區域甲基化程度之總表................42
表六、DNMT3A2啟動子區域甲基化程度之總表................45
表七、候選基因p-value之總表………………………………………47

圖一、GLOXD1 PCR產物之膠體電泳圖.....................48
圖二、Pyrosequencing的原始結果圖....................49
圖三、細胞株裡GLOXD1啟動子區域甲基化程度...............50
圖四、組織檢體GLOXD1 PCR產物之膠體電泳圖...............51
圖五、組織檢體裡GLOXD1啟動子區域甲基化程度..............52
圖六、細胞株裡ALDH1A2 1st PCR 及Nested-PCR產物之電泳圖.53
圖七、細胞株裡ALDH1A2啟動子區域甲基化程度.................54
圖八、組織混合檢體裡ALDH1A2 1st PCR 及Nested-PCR產物之電泳圖..55
圖九、組織混合檢體裡ALDH1A2啟動子區域甲基化程度............56
圖十、個別組織檢體裡ALDH1A2 1st PCR 及Nested-PCR產物之電泳圖..57
圖十一、個別組織檢體裡ALDH1A2啟動子區域甲基化程度.........58
圖十二、細胞株裡CALCA PCR產物之膠體電泳圖...............59
圖十三、細胞株裡CALCA啟動子區域甲基化程度................60
圖十四、組織混合檢體裡CALCA PCR產物之膠體電泳圖...........61
圖十五、組織混合檢體裡CALCA啟動子區域甲基化程度...........62
圖十六、細胞株裡DNMT3A1 PCR產物之膠體電泳圖.............63
圖十七、細胞株裡DNMT3A1啟動子區域甲基化程度..............64
圖十八、組織混合檢體裡DNMT3A1 PCR產物之膠體電泳圖.........65
圖十九、組織混合檢體裡DNMT3A1啟動子區域甲基化程度..........66
圖二十、個別組織檢體裡DNMT3A1 PCR產物之膠體電泳圖..........67
圖二十一、個別組織檢體裡DNMT3A1啟動子區域甲基化程度........68
圖二十二、細胞株裡DNMT3A2 PCR產物之膠體電泳圖............69
圖二十三、細胞株裡DNMT3A2啟動子區域甲基化程度..............70
圖二十四、組織混合檢體裡DNMT3A2 PCR產物之膠體電泳圖........71
圖二十五、組織混合檢體裡DNMT3A2啟動子區域甲基化程度.........72

附錄一、亞硫酸鹽轉換(Bisulfite conversion)原理圖........73
附錄二、(A)甲基化專一性聚合酶鏈鎖反應(MS-PCR)與(B)亞硫酸鹽定序(Bisulfite sequencing)原理圖...74
附錄三、焦磷酸定序(Pyrosequencing)原理圖和冷光儀轉讀出的結果...75
附錄四、Pyrosequencing所需之Primer .........................76
附錄五、以候選基因ALDH1A2為例,做為Nested-PCR Primer之示意圖...77
附錄六、PyroMark Q24 Vacuum Workstation...................78
附錄七、Pyrosequencing分析GLOXD1與候選基因(ALDH1A2、CALCA、DNMT3A1與DNMT3A2)啟動子區域示意圖....79

1. Jemal, A., et al., Global cancer statistics. CA Cancer J Clin, 2011. 61(2): p. 69-90.
2. Li, Z., et al., Foxa1 and Foxa2 are essential for sexual dimorphism in liver cancer. Cell, 2012. 148(1-2):
p. 72-83.
3. Befeler, A.S. and A.M. Di Bisceglie, Hepatocellular carcinoma: diagnosis and treatment. Gastroenterology,
2002. 122(6): p. 1609-19.
4. Whittaker, S., R. Marais, and A.X. Zhu, The role of signaling pathways in the development and treatment of
hepatocellular carcinoma. Oncogene, 2010. 29(36): p. 4989-5005.
5. Yu, M.C. and J.M. Yuan, Environmental factors and risk for hepatocellular carcinoma. Gastroenterology, 2004.
127(5 Suppl 1): p. S72-8.
6. Hui, A.M. and M. Makuuchi, Molecular basis of multistep hepatocarcinogenesis: genetic and epigenetic events.
Scand J Gastroenterol, 1999. 34(8): p. 737-42.
7. Liu, W.R., et al., Epigenetics of hepatocellular carcinoma: a new horizon. Chin Med J (Engl), 2012. 125(13):
p. 2349-60.
8. Tischoff, I. and A. Tannapfe, DNA methylation in hepatocellular carcinoma. World J Gastroenterol, 2008. 14
(11): p. 1741-8.
9. Baylin, S.B. and P.A. Jones, A decade of exploring the cancer epigenome - biological and translational
implications. Nat Rev Cancer, 2011. 11(10): p. 726-34.
10.Kanai, Y., et al., The E-cadherin gene is silenced by CpG methylation in human hepatocellular carcinomas.
Int J Cancer, 1997. 71(3): p. 355-9.
11.Schagdarsurengin, U., et al., Frequent epigenetic inactivation of the RASSF1A gene in hepatocellular
carcinoma. Oncogene, 2003. 22(12): p. 1866-71.
12.Kaneto, H., et al., Detection of hypermethylation of the p16(INK4A) gene promoter in chronic hepatitis and
cirrhosis associated with hepatitis B or C virus. Gut, 2001. 48(3): p. 372-7.
13.Tannapfel, A. and C. Wittekind, Genes involved in hepatocellular carcinoma: deregulation in cell cycling and
apoptosis. Virchows Arch, 2002. 440(4): p. 345-52.
14.Shih, Y.L., et al., SFRP1 suppressed hepatoma cells growth through Wnt canonical signaling pathway. Int J
Cancer, 2007. 121(5): p. 1028-35.
15.Aiba, N., et al., Hypomethylation of the c-myc oncogene in liver cirrhosis and chronic hepatitis.
Gastroenterol Jpn, 1989. 24(3): p. 270-6.
16.Zhang, Y.J., et al., Predicting hepatocellular carcinoma by detection of aberrant promoter methylation in
serum DNA. Clin Cancer Res, 2007. 13(8): p. 2378-84.
17.Chan, K.C., et al., Quantitative analysis of circulating methylated DNA as a biomarker for hepatocellular
carcinoma. Clin Chem, 2008. 54(9): p. 1528-36.
18.Gao, W., et al., Variable DNA methylation patterns associated with progression of disease in hepatocellular
carcinomas. Carcinogenesis, 2008. 29(10): p. 1901-10.
19.Robertson, K.D., DNA methylation, methyltransferases, and cancer. Oncogene, 2001. 20(24): p. 3139-55.
20.Feng, J., et al., Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult
forebrain neurons. Nat Neurosci, 2010. 13(4): p. 423-30.
21.Chen, T., et al., Establishment and maintenance of genomic methylation patterns in mouse embryonic stem
cells by Dnmt3a and Dnmt3b. Mol Cell Biol, 2003. 23(16): p. 5594-605.
22.Walton, E.L., C. Francastel, and G. Velasco, Maintenance of DNA methylation: Dnmt3b joins the dance.
Epigenetics, 2011. 6(11): p. 1373-7.
23.Oh, B.K., et al., DNA methyltransferase expression and DNA methylation in human hepatocellular carcinoma and
their clinicopathological correlation. Int J Mol Med, 2007. 20(1): p. 65-73.
24.Saito, Y., et al., Increased protein expression of DNA methyltransferase (DNMT) 1 is significantly
correlated with the malignant potential and poor prognosis of human hepatocellular carcinomas. Int J Cancer,
2003. 105(4): p. 527-32.
25.Kilgore, J.A., et al., Single-molecule and population probing of chromatin structure using DNA
methyltransferases. Methods, 2007. 41(3): p. 320-32.
26.Ronaghi, M., et al., Real-time DNA sequencing using detection of pyrophosphate release. Anal Biochem, 1996.
242(1): p. 84-9.
27.Colella, S., et al., Sensitive and quantitative universal Pyrosequencing methylation analysis of CpG sites.
Biotechniques, 2003. 35(1): p. 146-50.
28.Tost, J. and I.G. Gut, DNA methylation analysis by pyrosequencing. Nat Protoc, 2007. 2(9): p. 2265-75.
29.Yu, J., et al., DNA methylotype analysis in colorectal cancer. Oncol Rep, 2008. 20(4): p. 921-7.
30.Kim, H., et al., The retinoic acid synthesis gene ALDH1a2 is a candidate tumor suppressor in prostate
cancer. Cancer Res, 2005. 65(18): p. 8118-24.
31.Paixao, V.A., et al., Hypermethylation of CpG island in the promoter region of CALCA in acute lymphoblastic
leukemia with central nervous system (CNS) infiltration correlates with poorer prognosis. Leuk Res, 2006. 30
(7): p. 891-4.
32.Moran, A., et al., Methylation profiling in non-small cell lung cancer: clinical implications. Int J Oncol,
2012. 40(3): p. 739-46.
33.Widschwendter, A., et al., DNA methylation in serum and tumors of cervical cancer patients. Clin Cancer Res,
2004. 10(2): p. 565-71.
34.Chen, T., et al., A novel Dnmt3a isoform produced from an alternative promoter localizes to euchromatin and
its expression correlates with active de novo methylation. J Biol Chem, 2002. 277(41): p. 38746-54.
35.Yanagisawa, Y., et al., The human DNA methyltransferases DNMT3A and DNMT3B have two types of promoters with
different CpG contents. Biochim Biophys Acta, 2002. 1577(3): p. 457-65.
36.Choi, M.S., et al., Expression of DNA methyltransferases in multistep hepatocarcinogenesis. Hum Pathol,
2003. 34(1): p. 11-7.
37.Tang, Y.A., et al., MDM2 overexpression deregulates the transcriptional control of RB/E2F leading to DNA
methyltransferase 3A overexpression in lung cancer. Clin Cancer Res, 2012. 18(16): p. 4325-33.
38.Pepe, M.S., et al., Phases of biomarker development for early detection of cancer. J Natl Cancer Inst, 2001.
93(14): p. 1054-61.
39.Zhang, B.H., B.H. Yang, and Z.Y. Tang, Randomized controlled trial of screening for hepatocellular
carcinoma. J Cancer Res Clin Oncol, 2004. 130(7): p. 417-22.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔